-
Notifications
You must be signed in to change notification settings - Fork 1
/
rpa_rse.F
641 lines (536 loc) · 28.2 KB
/
rpa_rse.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Routines to compute singles correction to RPA (RSE)
!> \par History
!> 08.2019 created [Vladimir Rybkin]
!> \author Vladimir Rybkin
! **************************************************************************************************
MODULE rpa_rse
USE cp_blacs_env, ONLY: cp_blacs_env_type
USE cp_control_types, ONLY: dft_control_type
USE cp_dbcsr_api, ONLY: dbcsr_copy,&
dbcsr_create,&
dbcsr_init_p,&
dbcsr_p_type,&
dbcsr_release,&
dbcsr_scale,&
dbcsr_set,&
dbcsr_type_symmetric
USE cp_dbcsr_cp2k_link, ONLY: cp_dbcsr_alloc_block_from_nbl
USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
copy_fm_to_dbcsr,&
dbcsr_allocate_matrix_set
USE cp_fm_basic_linalg, ONLY: cp_fm_scale_and_add
USE cp_fm_diag, ONLY: choose_eigv_solver
USE cp_fm_struct, ONLY: cp_fm_struct_create,&
cp_fm_struct_release,&
cp_fm_struct_type
USE cp_fm_types, ONLY: cp_fm_create,&
cp_fm_get_diag,&
cp_fm_get_info,&
cp_fm_release,&
cp_fm_set_all,&
cp_fm_to_fm_submat,&
cp_fm_type
USE hfx_energy_potential, ONLY: integrate_four_center
USE hfx_exx, ONLY: exx_post_hfx,&
exx_pre_hfx
USE hfx_ri, ONLY: hfx_ri_update_ks
USE input_section_types, ONLY: section_vals_get,&
section_vals_get_subs_vals,&
section_vals_type,&
section_vals_val_get
USE kinds, ONLY: dp
USE message_passing, ONLY: mp_para_env_type
USE mp2_types, ONLY: mp2_type
USE parallel_gemm_api, ONLY: parallel_gemm
USE pw_types, ONLY: pw_r3d_rs_type
USE qs_energy_types, ONLY: qs_energy_type
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_ks_types, ONLY: qs_ks_env_type
USE qs_ks_utils, ONLY: compute_matrix_vxc
USE qs_neighbor_list_types, ONLY: neighbor_list_set_p_type
USE qs_rho_types, ONLY: qs_rho_get,&
qs_rho_type
USE qs_vxc, ONLY: qs_vxc_create
!$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num, omp_get_num_threads
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'rpa_rse'
PUBLIC :: rse_energy
CONTAINS
! **************************************************************************************************
!> \brief Single excitations energy corrections for RPA
!> \param qs_env ...
!> \param mp2_env ...
!> \param para_env ...
!> \param dft_control ...
!> \param mo_coeff ...
!> \param nmo ...
!> \param homo ...
!> \param Eigenval ...
!> \author Vladimir Rybkin, 08/2019
! **************************************************************************************************
SUBROUTINE rse_energy(qs_env, mp2_env, para_env, dft_control, &
mo_coeff, nmo, homo, Eigenval)
TYPE(qs_environment_type), INTENT(IN), POINTER :: qs_env
TYPE(mp2_type), INTENT(INOUT) :: mp2_env
TYPE(mp_para_env_type), INTENT(IN), POINTER :: para_env
TYPE(dft_control_type), INTENT(IN), POINTER :: dft_control
TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: mo_coeff
INTEGER, INTENT(IN) :: nmo
INTEGER, DIMENSION(:), INTENT(IN) :: homo
REAL(KIND=dp), DIMENSION(:, :), INTENT(IN) :: Eigenval
CHARACTER(LEN=*), PARAMETER :: routineN = 'rse_energy'
INTEGER :: dimen, handle, i_global, iiB, ispin, &
j_global, jjB, n_rep_hf, ncol_local, &
nrow_local, nspins
INTEGER, DIMENSION(:), POINTER :: col_indices, row_indices
LOGICAL :: do_hfx, hfx_treat_lsd_in_core
REAL(KIND=dp) :: coeff, corr, rse_corr
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: diag_diff
TYPE(cp_blacs_env_type), POINTER :: blacs_env
TYPE(cp_fm_struct_type), POINTER :: fm_struct_tmp
TYPE(cp_fm_type) :: fm_ao, fm_ao_mo
TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_P_mu_nu, fm_X_mo, fm_XC_mo
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_mu_nu, matrix_s, rho_ao
TYPE(neighbor_list_set_p_type), DIMENSION(:), &
POINTER :: sab_orb
TYPE(qs_energy_type), POINTER :: energy
TYPE(qs_rho_type), POINTER :: rho
TYPE(section_vals_type), POINTER :: hfx_sections, input
CALL timeset(routineN, handle)
nspins = dft_control%nspins
! Pick the diagonal terms
CALL cp_fm_get_info(matrix=mo_coeff(1), &
nrow_local=nrow_local, &
ncol_local=ncol_local, &
row_indices=row_indices, &
col_indices=col_indices)
! start collecting stuff
dimen = nmo
NULLIFY (input, matrix_s, blacs_env, rho, energy, sab_orb)
CALL get_qs_env(qs_env, &
input=input, &
matrix_s=matrix_s, &
blacs_env=blacs_env, &
rho=rho, &
energy=energy, &
sab_orb=sab_orb)
CALL qs_rho_get(rho, rho_ao=rho_ao)
! hfx section
NULLIFY (hfx_sections)
hfx_sections => section_vals_get_subs_vals(input, "DFT%XC%WF_CORRELATION%RI_RPA%HF")
CALL section_vals_get(hfx_sections, explicit=do_hfx, n_repetition=n_rep_hf)
IF (do_hfx) THEN
CALL section_vals_val_get(hfx_sections, "TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
i_rep_section=1)
END IF
! create work array
NULLIFY (mat_mu_nu)
CALL dbcsr_allocate_matrix_set(mat_mu_nu, nspins)
DO ispin = 1, nspins
ALLOCATE (mat_mu_nu(ispin)%matrix)
CALL dbcsr_create(matrix=mat_mu_nu(ispin)%matrix, template=matrix_s(1)%matrix, name="T_mu_nu", &
matrix_type=dbcsr_type_symmetric, nze=0)
CALL cp_dbcsr_alloc_block_from_nbl(mat_mu_nu(ispin)%matrix, sab_orb)
CALL dbcsr_set(mat_mu_nu(ispin)%matrix, 0.0_dp)
END DO
! Dense (full) matrices
ALLOCATE (fm_P_mu_nu(nspins))
NULLIFY (fm_struct_tmp)
CALL cp_fm_struct_create(fm_struct_tmp, para_env=para_env, context=blacs_env, &
nrow_global=dimen, ncol_global=dimen)
DO ispin = 1, nspins
CALL cp_fm_create(fm_P_mu_nu(ispin), fm_struct_tmp, name="P_mu_nu")
CALL cp_fm_set_all(fm_P_mu_nu(ispin), 0.0_dp)
END DO
CALL cp_fm_struct_release(fm_struct_tmp)
NULLIFY (fm_struct_tmp)
CALL cp_fm_struct_create(fm_struct_tmp, para_env=para_env, context=blacs_env, &
nrow_global=dimen, ncol_global=dimen)
ALLOCATE (fm_X_mo(nspins), fm_XC_mo(nspins))
DO ispin = 1, nspins
CALL cp_fm_create(fm_X_mo(ispin), fm_struct_tmp, name="f_X_mo")
CALL cp_fm_create(fm_XC_mo(ispin), fm_struct_tmp, name="f_XC_mo")
CALL cp_fm_set_all(fm_X_mo(ispin), 0.0_dp)
CALL cp_fm_set_all(fm_XC_mo(ispin), 0.0_dp)
END DO
CALL cp_fm_struct_release(fm_struct_tmp)
CALL cp_fm_struct_create(fm_struct_tmp, para_env=para_env, context=blacs_env, &
nrow_global=dimen, ncol_global=dimen)
CALL cp_fm_create(fm_ao, fm_struct_tmp, name="f_ao")
CALL cp_fm_struct_release(fm_struct_tmp)
CALL cp_fm_set_all(fm_ao, 0.0_dp)
CALL cp_fm_struct_create(fm_struct_tmp, para_env=para_env, context=blacs_env, &
nrow_global=dimen, ncol_global=dimen)
CALL cp_fm_create(fm_ao_mo, fm_struct_tmp, name="f_ao_mo")
CALL cp_fm_struct_release(fm_struct_tmp)
CALL cp_fm_set_all(fm_ao_mo, 0.0_dp)
!
! Ready with preparations, do the real staff
!
! Obtain density matrix like quantity
coeff = 1.0_dp
IF (nspins == 1) coeff = 2.0_dp
DO ispin = 1, nspins
CALL parallel_gemm(transa='N', transb='T', m=dimen, n=dimen, k=homo(ispin), alpha=coeff, &
matrix_a=mo_coeff(ispin), matrix_b=mo_coeff(ispin), &
beta=0.0_dp, matrix_c=fm_P_mu_nu(ispin))
END DO
! Calculate exact exchange contribution
CALL exchange_contribution(qs_env, para_env, dimen, mo_coeff, &
hfx_sections, n_rep_hf, &
rho, mat_mu_nu, fm_P_mu_nu, &
fm_ao, fm_X_mo, fm_ao_mo)
! Calculate DFT exchange-correlation contribution
CALL xc_contribution(qs_env, fm_ao, fm_ao_mo, fm_XC_mo, mo_coeff, dimen)
ALLOCATE (diag_diff(dimen))
rse_corr = 0.0_dp
DO ispin = 1, nspins
! Compute the correction matrix: it is stored in fm_X_mo
CALL cp_fm_scale_and_add(1.0_dp, fm_X_mo(ispin), -1.0_dp, fm_XC_mo(ispin))
! Pick the diagonal terms
CALL cp_fm_get_diag(fm_X_mo(ispin), diag_diff)
! Compute the correction
CALL cp_fm_get_info(matrix=fm_X_mo(ispin), &
nrow_local=nrow_local, &
ncol_local=ncol_local, &
row_indices=row_indices, &
col_indices=col_indices)
corr = 0.0_dp
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(jjB,iiB,i_global,j_global) &
!$OMP REDUCTION(+: corr) &
!$OMP SHARED(ncol_local,nrow_local,col_indices,row_indices,diag_diff,eigenval,fm_X_mo,homo,ispin)
DO jjB = 1, ncol_local
j_global = col_indices(jjB)
DO iiB = 1, nrow_local
i_global = row_indices(iiB)
IF ((i_global .LE. homo(ispin)) .AND. (j_global .GT. homo(ispin))) THEN
corr = corr + fm_X_mo(ispin)%local_data(iib, jjb)**2.0_dp/ &
(eigenval(i_global, ispin) - eigenval(j_global, ispin) - diag_diff(i_global) + diag_diff(j_global))
END IF
END DO
END DO
!$OMP END PARALLEL DO
rse_corr = rse_corr + corr
END DO
CALL para_env%sum(rse_corr)
IF (nspins == 1) rse_corr = rse_corr*2.0_dp
mp2_env%ri_rpa%rse_corr_diag = rse_corr
CALL non_diag_rse(fm_X_mo, eigenval, dimen, homo, para_env, blacs_env, rse_corr)
IF (nspins == 1) rse_corr = rse_corr*2.0_dp
mp2_env%ri_rpa%rse_corr = rse_corr
! Release staff
DEALLOCATE (diag_diff)
CALL cp_fm_release(fm_ao)
CALL cp_fm_release(fm_ao_mo)
CALL cp_fm_release(fm_P_mu_nu)
CALL cp_fm_release(fm_X_mo)
CALL cp_fm_release(fm_XC_mo)
DO ispin = 1, nspins
CALL dbcsr_release(mat_mu_nu(ispin)%matrix)
DEALLOCATE (mat_mu_nu(ispin)%matrix)
END DO
DEALLOCATE (mat_mu_nu)
CALL timestop(handle)
END SUBROUTINE rse_energy
! **************************************************************************************************
!> \brief HF exchange occupied-virtual matrix
!> \param qs_env ...
!> \param para_env ...
!> \param dimen ...
!> \param mo_coeff ...
!> \param hfx_sections ...
!> \param n_rep_hf ...
!> \param rho_work ...
!> \param mat_mu_nu ...
!> \param fm_P_mu_nu ...
!> \param fm_X_ao ...
!> \param fm_X_mo ...
!> \param fm_X_ao_mo ...
! **************************************************************************************************
SUBROUTINE exchange_contribution(qs_env, para_env, dimen, mo_coeff, &
hfx_sections, n_rep_hf, &
rho_work, mat_mu_nu, fm_P_mu_nu, &
fm_X_ao, fm_X_mo, fm_X_ao_mo)
TYPE(qs_environment_type), INTENT(IN), POINTER :: qs_env
TYPE(mp_para_env_type), INTENT(IN), POINTER :: para_env
INTEGER, INTENT(IN) :: dimen
TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: mo_coeff
TYPE(section_vals_type), INTENT(IN), POINTER :: hfx_sections
INTEGER, INTENT(IN) :: n_rep_hf
TYPE(qs_rho_type), INTENT(IN), POINTER :: rho_work
TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN), &
POINTER :: mat_mu_nu
TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: fm_P_mu_nu
TYPE(cp_fm_type), INTENT(IN) :: fm_X_ao
TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: fm_X_mo
TYPE(cp_fm_type), INTENT(IN) :: fm_X_ao_mo
CHARACTER(LEN=*), PARAMETER :: routineN = 'exchange_contribution'
INTEGER :: handle, irep, is, ns
LOGICAL :: my_recalc_hfx_integrals
REAL(KIND=dp) :: ehfx
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: P_mu_nu, rho_work_ao
TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: mat_2d, rho_ao_2d
CALL timeset(routineN, handle)
CALL qs_rho_get(rho_work, rho_ao=rho_work_ao)
ns = SIZE(rho_work_ao)
NULLIFY (P_mu_nu)
CALL dbcsr_allocate_matrix_set(P_mu_nu, ns)
DO is = 1, ns
CALL dbcsr_init_p(P_mu_nu(is)%matrix)
CALL dbcsr_create(P_mu_nu(is)%matrix, template=rho_work_ao(1)%matrix)
CALL dbcsr_copy(P_mu_nu(is)%matrix, rho_work_ao(1)%matrix)
CALL dbcsr_set(P_mu_nu(is)%matrix, 0.0_dp)
END DO
my_recalc_hfx_integrals = .TRUE.
CALL exx_pre_hfx(hfx_sections, qs_env%mp2_env%ri_rpa%x_data, qs_env%mp2_env%ri_rpa%reuse_hfx)
DO is = 1, ns
CALL copy_fm_to_dbcsr(fm_P_mu_nu(is), P_mu_nu(1)%matrix, keep_sparsity=.TRUE.)
CALL dbcsr_set(mat_mu_nu(1)%matrix, 0.0_dp)
IF (qs_env%mp2_env%ri_rpa%x_data(1, 1)%do_hfx_ri) THEN
DO irep = 1, n_rep_hf
rho_ao_2d(1:ns, 1:1) => P_mu_nu(1:ns)
mat_2d(1:ns, 1:1) => mat_mu_nu(1:ns)
CALL hfx_ri_update_ks(qs_env, qs_env%mp2_env%ri_rpa%x_data(irep, 1)%ri_data, mat_2d, ehfx, &
rho_ao=rho_ao_2d, geometry_did_change=my_recalc_hfx_integrals, nspins=1, &
hf_fraction=qs_env%mp2_env%ri_rpa%x_data(irep, 1)%general_parameter%fraction)
IF (ns == 2) CALL dbcsr_scale(mat_mu_nu(1)%matrix, 2.0_dp)
my_recalc_hfx_integrals = .FALSE.
END DO
ELSE
DO irep = 1, n_rep_hf
rho_ao_2d(1:ns, 1:1) => P_mu_nu(1:ns)
mat_2d(1:ns, 1:1) => mat_mu_nu(1:ns)
CALL integrate_four_center(qs_env, qs_env%mp2_env%ri_rpa%x_data, mat_2d, ehfx, rho_ao_2d, hfx_sections, &
para_env, my_recalc_hfx_integrals, irep, .TRUE., &
ispin=1)
my_recalc_hfx_integrals = .FALSE.
END DO
END IF
! copy back to fm
CALL cp_fm_set_all(fm_X_ao, 0.0_dp)
CALL copy_dbcsr_to_fm(matrix=mat_mu_nu(1)%matrix, fm=fm_X_ao)
CALL cp_fm_set_all(fm_X_mo(is), 0.0_dp)
! First index
CALL parallel_gemm('T', 'N', dimen, dimen, dimen, 1.0_dp, &
mo_coeff(is), fm_X_ao, 0.0_dp, fm_X_ao_mo)
! Second index
CALL parallel_gemm('N', 'N', dimen, dimen, dimen, 1.0_dp, &
fm_X_ao_mo, mo_coeff(is), 1.0_dp, fm_X_mo(is))
END DO
CALL exx_post_hfx(qs_env, qs_env%mp2_env%ri_rpa%x_data, qs_env%mp2_env%ri_rpa%reuse_hfx)
! Release dbcsr objects
DO is = 1, SIZE(P_mu_nu)
CALL dbcsr_release(P_mu_nu(is)%matrix)
DEALLOCATE (P_mu_nu(is)%matrix)
END DO
DEALLOCATE (P_mu_nu)
CALL timestop(handle)
END SUBROUTINE exchange_contribution
! **************************************************************************************************
!> \brief Exchange-correlation occupied-virtual matrix
!> \param qs_env ...
!> \param fm_XC_ao ...
!> \param fm_XC_ao_mo ...
!> \param fm_XC_mo ...
!> \param mo_coeff ...
!> \param dimen ...
! **************************************************************************************************
SUBROUTINE xc_contribution(qs_env, fm_XC_ao, fm_XC_ao_mo, fm_XC_mo, mo_coeff, dimen)
TYPE(qs_environment_type), INTENT(IN), POINTER :: qs_env
TYPE(cp_fm_type), INTENT(IN) :: fm_XC_ao, fm_XC_ao_mo
TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: fm_XC_mo, mo_coeff
INTEGER, INTENT(IN) :: dimen
CHARACTER(LEN=*), PARAMETER :: routineN = 'xc_contribution'
INTEGER :: handle, i
REAL(KIND=dp) :: exc
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_vxc
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: tau_rspace, v_rspace
TYPE(qs_ks_env_type), POINTER :: ks_env
TYPE(qs_rho_type), POINTER :: rho
TYPE(section_vals_type), POINTER :: input, xc_section
CALL timeset(routineN, handle)
NULLIFY (matrix_vxc, v_rspace, tau_rspace, input, xc_section, ks_env, &
rho)
CALL get_qs_env(qs_env, matrix_vxc=matrix_vxc, input=input, ks_env=ks_env, rho=rho)
xc_section => section_vals_get_subs_vals(input, "DFT%XC")
! Compute XC matrix in AO basis
CALL qs_vxc_create(ks_env=ks_env, rho_struct=rho, xc_section=xc_section, &
vxc_rho=v_rspace, vxc_tau=tau_rspace, exc=exc)
IF (ASSOCIATED(v_rspace)) THEN
CALL compute_matrix_vxc(qs_env=qs_env, v_rspace=v_rspace, matrix_vxc=matrix_vxc)
DO i = 1, SIZE(v_rspace)
CALL v_rspace(i)%release()
END DO
DEALLOCATE (v_rspace)
DO i = 1, SIZE(matrix_vxc)
CALL cp_fm_set_all(fm_XC_ao, 0.0_dp)
CALL copy_dbcsr_to_fm(matrix=matrix_vxc(i)%matrix, fm=fm_XC_ao)
CALL cp_fm_set_all(fm_XC_mo(i), 0.0_dp)
! First index
CALL parallel_gemm('T', 'N', dimen, dimen, dimen, 1.0_dp, &
mo_coeff(i), fm_XC_ao, 0.0_dp, fm_XC_ao_mo)
! Second index
CALL parallel_gemm('N', 'N', dimen, dimen, dimen, 1.0_dp, &
fm_XC_ao_mo, mo_coeff(i), 1.0_dp, fm_XC_mo(i))
END DO
DO i = 1, SIZE(matrix_vxc)
CALL dbcsr_release(matrix_vxc(i)%matrix)
DEALLOCATE (matrix_vxc(i)%matrix)
END DO
DEALLOCATE (matrix_vxc)
END IF
CALL timestop(handle)
END SUBROUTINE xc_contribution
! **************************************************************************************************
!> \brief ...
!> \param fm_F_mo ...
!> \param eigenval ...
!> \param dimen ...
!> \param homo ...
!> \param para_env ...
!> \param blacs_env ...
!> \param rse_corr ...
! **************************************************************************************************
SUBROUTINE non_diag_rse(fm_F_mo, eigenval, dimen, homo, para_env, &
blacs_env, rse_corr)
TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: fm_F_mo
REAL(KIND=dp), DIMENSION(:, :), INTENT(IN) :: Eigenval
INTEGER, INTENT(IN) :: dimen
INTEGER, DIMENSION(:), INTENT(IN) :: homo
TYPE(mp_para_env_type), INTENT(IN), POINTER :: para_env
TYPE(cp_blacs_env_type), INTENT(IN), POINTER :: blacs_env
REAL(KIND=dp), INTENT(OUT) :: rse_corr
CHARACTER(LEN=*), PARAMETER :: routineN = 'non_diag_rse'
INTEGER :: handle, i_global, iiB, ispin, j_global, &
jjB, ncol_local, nrow_local, nspins, &
virtual
INTEGER, DIMENSION(:), POINTER :: col_indices, row_indices
REAL(KIND=dp) :: corr
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: eig_o, eig_semi_can, eig_v
TYPE(cp_fm_struct_type), POINTER :: fm_struct_tmp
TYPE(cp_fm_type) :: fm_F_oo, fm_F_ov, fm_F_vv, fm_O, fm_tmp, &
fm_U
CALL timeset(routineN, handle)
nspins = SIZE(fm_f_mo)
DO ispin = 1, nspins
! Add eigenvalues on the diagonal
CALL cp_fm_get_info(matrix=fm_F_mo(ispin), &
nrow_local=nrow_local, &
ncol_local=ncol_local, &
row_indices=row_indices, &
col_indices=col_indices)
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(jjB,iiB,i_global,j_global) &
!$OMP SHARED(ncol_local,nrow_local,col_indices,row_indices,fm_F_mo,eigenval,ispin)
DO jjB = 1, ncol_local
j_global = col_indices(jjB)
DO iiB = 1, nrow_local
i_global = row_indices(iiB)
IF (i_global .EQ. j_global) fm_F_mo(ispin)%local_data(iib, jjb) = &
fm_F_mo(ispin)%local_data(iib, jjb) + eigenval(i_global, ispin)
END DO
END DO
!$OMP END PARALLEL DO
END DO
rse_corr = 0.0_dp
DO ispin = 1, nspins
IF (homo(ispin) <= 0 .OR. homo(ispin) >= dimen) CYCLE
! Create the occupied-occupied and virtual-virtual blocks, eigenvectors
NULLIFY (fm_struct_tmp)
CALL cp_fm_struct_create(fm_struct_tmp, para_env=para_env, context=blacs_env, &
nrow_global=homo(ispin), ncol_global=homo(ispin))
CALL cp_fm_create(fm_F_oo, fm_struct_tmp, name="F_oo")
CALL cp_fm_create(fm_O, fm_struct_tmp, name="O")
CALL cp_fm_set_all(fm_F_oo, 0.0_dp)
CALL cp_fm_set_all(fm_O, 0.0_dp)
CALL cp_fm_struct_release(fm_struct_tmp)
CALL cp_fm_to_fm_submat(msource=fm_F_mo(ispin), mtarget=fm_F_oo, &
nrow=homo(ispin), ncol=homo(ispin), &
s_firstrow=1, s_firstcol=1, &
t_firstrow=1, t_firstcol=1)
virtual = dimen - homo(ispin)
NULLIFY (fm_struct_tmp)
CALL cp_fm_struct_create(fm_struct_tmp, para_env=para_env, context=blacs_env, &
nrow_global=virtual, ncol_global=virtual)
CALL cp_fm_create(fm_F_vv, fm_struct_tmp, name="F_vv")
CALL cp_fm_create(fm_U, fm_struct_tmp, name="U")
CALL cp_fm_set_all(fm_F_vv, 0.0_dp)
CALL cp_fm_set_all(fm_U, 0.0_dp)
CALL cp_fm_struct_release(fm_struct_tmp)
CALL cp_fm_to_fm_submat(msource=fm_F_mo(ispin), mtarget=fm_F_vv, &
nrow=virtual, ncol=virtual, &
s_firstrow=homo(ispin) + 1, s_firstcol=homo(ispin) + 1, &
t_firstrow=1, t_firstcol=1)
! Diagonalize occupied-occupied and virtual-virtual matrices
ALLOCATE (eig_o(homo(ispin)))
ALLOCATE (eig_v(virtual))
eig_v = 0.0_dp
eig_o = 0.0_dp
CALL choose_eigv_solver(fm_F_oo, fm_O, eig_o)
CALL choose_eigv_solver(fm_F_vv, fm_U, eig_v)
! Collect the eigenvalues to one array
ALLOCATE (eig_semi_can(dimen))
eig_semi_can = 0.0_dp
eig_semi_can(1:homo(ispin)) = eig_o(:)
eig_semi_can(homo(ispin) + 1:dimen) = eig_v(:)
! Create occupied-virtual block
NULLIFY (fm_struct_tmp)
CALL cp_fm_struct_create(fm_struct_tmp, para_env=para_env, context=blacs_env, &
nrow_global=homo(ispin), ncol_global=virtual)
CALL cp_fm_create(fm_F_ov, fm_struct_tmp, name="F_ov")
CALL cp_fm_create(fm_tmp, fm_struct_tmp, name="tmp")
CALL cp_fm_set_all(fm_F_ov, 0.0_dp)
CALL cp_fm_set_all(fm_tmp, 0.0_dp)
CALL cp_fm_struct_release(fm_struct_tmp)
CALL cp_fm_to_fm_submat(msource=fm_F_mo(ispin), mtarget=fm_F_ov, &
nrow=homo(ispin), ncol=virtual, &
s_firstrow=1, s_firstcol=homo(ispin) + 1, &
t_firstrow=1, t_firstcol=1)
CALL parallel_gemm(transa='T', transb='N', m=homo(ispin), n=virtual, k=homo(ispin), alpha=1.0_dp, &
matrix_a=fm_O, matrix_b=fm_F_ov, beta=0.0_dp, matrix_c=fm_tmp)
CALL parallel_gemm(transa='N', transb='N', m=homo(ispin), n=virtual, k=virtual, alpha=1.0_dp, &
matrix_a=fm_tmp, matrix_b=fm_U, beta=0.0_dp, matrix_c=fm_F_ov)
! Compute the correction
CALL cp_fm_get_info(matrix=fm_F_ov, &
nrow_local=nrow_local, &
ncol_local=ncol_local, &
row_indices=row_indices, &
col_indices=col_indices)
corr = 0.0_dp
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(jjB,iiB,i_global,j_global) &
!$OMP REDUCTION(+:corr) &
!$OMP SHARED(ncol_local,nrow_local,col_indices,row_indices,fm_F_ov,eig_semi_can,homo,ispin)
DO jjB = 1, ncol_local
j_global = col_indices(jjB)
DO iiB = 1, nrow_local
i_global = row_indices(iiB)
corr = corr + fm_F_ov%local_data(iib, jjb)**2.0_dp/ &
(eig_semi_can(i_global) - eig_semi_can(j_global + homo(ispin)))
END DO
END DO
!$OMP END PARALLEL DO
rse_corr = rse_corr + corr
! Release
DEALLOCATE (eig_semi_can)
DEALLOCATE (eig_o)
DEALLOCATE (eig_v)
CALL cp_fm_release(fm_F_ov)
CALL cp_fm_release(fm_F_oo)
CALL cp_fm_release(fm_F_vv)
CALL cp_fm_release(fm_U)
CALL cp_fm_release(fm_O)
CALL cp_fm_release(fm_tmp)
END DO
CALL para_env%sum(rse_corr)
CALL timestop(handle)
END SUBROUTINE non_diag_rse
END MODULE rpa_rse