-
Notifications
You must be signed in to change notification settings - Fork 1
/
rpa_gw_im_time_util.F
880 lines (659 loc) · 37.7 KB
/
rpa_gw_im_time_util.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Utility routines for GW with imaginary time
!> \par History
!> 06.2019 split from rpa_im_time.F [Frederick Stein]
! **************************************************************************************************
MODULE rpa_gw_im_time_util
USE atomic_kind_types, ONLY: atomic_kind_type
USE basis_set_types, ONLY: gto_basis_set_p_type
USE cell_types, ONLY: cell_type,&
pbc
USE cp_dbcsr_api, ONLY: &
dbcsr_add_on_diag, dbcsr_create, dbcsr_distribution_get, dbcsr_distribution_new, &
dbcsr_distribution_release, dbcsr_distribution_type, dbcsr_filter, dbcsr_get_diag, &
dbcsr_get_info, dbcsr_get_stored_coordinates, dbcsr_init_p, dbcsr_iterator_blocks_left, &
dbcsr_iterator_next_block, dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, &
dbcsr_multiply, dbcsr_p_type, dbcsr_release, dbcsr_release_p, dbcsr_reserve_all_blocks, &
dbcsr_set_diag, dbcsr_type, dbcsr_type_no_symmetry
USE cp_dbcsr_operations, ONLY: copy_fm_to_dbcsr,&
cp_dbcsr_m_by_n_from_row_template
USE cp_fm_types, ONLY: cp_fm_create,&
cp_fm_release,&
cp_fm_set_element,&
cp_fm_to_fm,&
cp_fm_type
USE dbt_api, ONLY: &
dbt_contract, dbt_copy, dbt_copy_matrix_to_tensor, dbt_create, dbt_default_distvec, &
dbt_destroy, dbt_get_info, dbt_pgrid_create, dbt_pgrid_destroy, dbt_pgrid_type, dbt_type
USE hfx_types, ONLY: alloc_containers,&
block_ind_type,&
hfx_compression_type
USE kinds, ONLY: dp,&
int_8
USE mathconstants, ONLY: twopi
USE message_passing, ONLY: mp_dims_create,&
mp_para_env_type,&
mp_request_type
USE mp2_types, ONLY: integ_mat_buffer_type
USE particle_methods, ONLY: get_particle_set
USE particle_types, ONLY: particle_type
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_integral_utils, ONLY: basis_set_list_setup
USE qs_kind_types, ONLY: qs_kind_type
USE qs_tensors, ONLY: compress_tensor,&
decompress_tensor,&
get_tensor_occupancy
USE qs_tensors_types, ONLY: create_2c_tensor,&
create_3c_tensor,&
pgf_block_sizes,&
split_block_sizes
USE rpa_communication, ONLY: communicate_buffer
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'rpa_gw_im_time_util'
PUBLIC :: get_tensor_3c_overl_int_gw, compute_weight_re_im, get_atom_index_from_basis_function_index
CONTAINS
! **************************************************************************************************
!> \brief ...
!> \param t_3c_overl_int ...
!> \param t_3c_O_compressed ...
!> \param t_3c_O_ind ...
!> \param t_3c_overl_int_ao_mo ...
!> \param t_3c_O_mo_compressed ...
!> \param t_3c_O_mo_ind ...
!> \param t_3c_overl_int_gw_RI ...
!> \param t_3c_overl_int_gw_AO ...
!> \param starts_array_mc ...
!> \param ends_array_mc ...
!> \param mo_coeff ...
!> \param matrix_s ...
!> \param gw_corr_lev_occ ...
!> \param gw_corr_lev_virt ...
!> \param homo ...
!> \param nmo ...
!> \param para_env ...
!> \param do_ic_model ...
!> \param t_3c_overl_nnP_ic ...
!> \param t_3c_overl_nnP_ic_reflected ...
!> \param qs_env ...
!> \param unit_nr ...
!> \param do_alpha ...
! **************************************************************************************************
SUBROUTINE get_tensor_3c_overl_int_gw(t_3c_overl_int, t_3c_O_compressed, t_3c_O_ind, &
t_3c_overl_int_ao_mo, t_3c_O_mo_compressed, t_3c_O_mo_ind, &
t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, &
starts_array_mc, ends_array_mc, &
mo_coeff, matrix_s, &
gw_corr_lev_occ, gw_corr_lev_virt, homo, nmo, &
para_env, &
do_ic_model, &
t_3c_overl_nnP_ic, t_3c_overl_nnP_ic_reflected, &
qs_env, unit_nr, do_alpha)
TYPE(dbt_type), DIMENSION(:, :) :: t_3c_overl_int
TYPE(hfx_compression_type), DIMENSION(:, :, :) :: t_3c_O_compressed
TYPE(block_ind_type), DIMENSION(:, :, :) :: t_3c_O_ind
TYPE(dbt_type) :: t_3c_overl_int_ao_mo
TYPE(hfx_compression_type) :: t_3c_O_mo_compressed
INTEGER, ALLOCATABLE, DIMENSION(:, :) :: t_3c_O_mo_ind
TYPE(dbt_type) :: t_3c_overl_int_gw_RI, &
t_3c_overl_int_gw_AO
INTEGER, DIMENSION(:), INTENT(IN) :: starts_array_mc, ends_array_mc
TYPE(cp_fm_type), INTENT(IN) :: mo_coeff
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
INTEGER, INTENT(IN) :: gw_corr_lev_occ, gw_corr_lev_virt, homo, &
nmo
TYPE(mp_para_env_type), INTENT(IN) :: para_env
LOGICAL, INTENT(IN) :: do_ic_model
TYPE(dbt_type) :: t_3c_overl_nnP_ic, &
t_3c_overl_nnP_ic_reflected
TYPE(qs_environment_type), POINTER :: qs_env
INTEGER, INTENT(IN) :: unit_nr
LOGICAL, INTENT(IN), OPTIONAL :: do_alpha
CHARACTER(LEN=*), PARAMETER :: routineN = 'get_tensor_3c_overl_int_gw'
INTEGER :: cut_memory, handle, i_mem, icol_global, imo, irow_global, min_bsize, &
min_bsize_mo, nkind, nmo_blk_gw, npcols, nprows, size_MO, unit_nr_prv
INTEGER(int_8) :: nze
INTEGER, ALLOCATABLE, DIMENSION(:) :: dist1, dist2, dist3, sizes_AO, &
sizes_AO_split, sizes_MO, sizes_MO_1, &
sizes_RI, sizes_RI_split, tmp
INTEGER, DIMENSION(2) :: pdims_2d
INTEGER, DIMENSION(2, 1) :: bounds
INTEGER, DIMENSION(2, 3) :: ibounds
INTEGER, DIMENSION(3) :: bounds_3c, pdims
INTEGER, DIMENSION(:), POINTER :: distp_1, distp_2, sizes_MO_blocked, &
sizes_MO_p1, sizes_MO_p2
LOGICAL :: memory_info, my_do_alpha
REAL(dp) :: compression_factor, memory_3c, occ
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: norm
TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
TYPE(cp_fm_type) :: fm_mat_mo_coeff_gw
TYPE(dbcsr_distribution_type) :: dist, dist_templ
TYPE(dbcsr_type) :: mat_mo_coeff_gw_reflected_norm, &
mat_norm, mat_norm_diag, mat_work
TYPE(dbcsr_type), POINTER :: mat_mo_coeff_gw, &
mat_mo_coeff_gw_reflected
TYPE(dbt_pgrid_type) :: pgrid_2d, pgrid_AO, pgrid_ic, pgrid_MO
TYPE(dbt_type) :: mo_coeff_gw_t, mo_coeff_gw_t_tmp, &
t_3c_overl_int_ao_ao, &
t_3c_overl_int_mo_ao, &
t_3c_overl_int_mo_mo
TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER :: basis_set_ao, basis_set_ri_aux
TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
memory_info = qs_env%mp2_env%ri_rpa_im_time%memory_info
IF (memory_info) THEN
unit_nr_prv = unit_nr
ELSE
unit_nr_prv = 0
END IF
my_do_alpha = .FALSE.
IF (PRESENT(do_alpha)) my_do_alpha = do_alpha
CALL timeset(routineN, handle)
CALL get_qs_env(qs_env, nkind=nkind, qs_kind_set=qs_kind_set, particle_set=particle_set, atomic_kind_set=atomic_kind_set)
CALL cp_fm_create(fm_mat_mo_coeff_gw, mo_coeff%matrix_struct)
CALL cp_fm_to_fm(mo_coeff, fm_mat_mo_coeff_gw)
! set MO coeffs to zero where
DO irow_global = 1, nmo
DO icol_global = 1, homo - gw_corr_lev_occ
CALL cp_fm_set_element(fm_mat_mo_coeff_gw, irow_global, icol_global, 0.0_dp)
END DO
DO icol_global = homo + gw_corr_lev_virt + 1, nmo
CALL cp_fm_set_element(fm_mat_mo_coeff_gw, irow_global, icol_global, 0.0_dp)
END DO
END DO
NULLIFY (mat_mo_coeff_gw)
CALL dbcsr_init_p(mat_mo_coeff_gw)
CALL cp_dbcsr_m_by_n_from_row_template(mat_mo_coeff_gw, template=matrix_s(1)%matrix, n=nmo, &
sym=dbcsr_type_no_symmetry)
CALL copy_fm_to_dbcsr(fm_mat_mo_coeff_gw, &
mat_mo_coeff_gw, &
keep_sparsity=.FALSE.)
! just remove the blocks which have been set to zero
CALL dbcsr_filter(mat_mo_coeff_gw, 1.0E-20_dp)
min_bsize = qs_env%mp2_env%ri_rpa_im_time%min_bsize
min_bsize_mo = qs_env%mp2_env%ri_rpa_im_time%min_bsize_mo
CALL split_block_sizes([gw_corr_lev_occ + gw_corr_lev_virt], sizes_MO, min_bsize_mo)
ALLOCATE (sizes_MO_1(nmo))
sizes_MO_1(:) = 1
nmo_blk_gw = SIZE(sizes_MO)
CALL move_alloc(sizes_MO, tmp)
ALLOCATE (sizes_MO(nmo_blk_gw + 2))
sizes_MO(1) = homo - gw_corr_lev_occ
sizes_MO(2:SIZE(tmp) + 1) = tmp(:)
sizes_MO(SIZE(tmp) + 2) = nmo - (homo + gw_corr_lev_virt)
ALLOCATE (basis_set_ri_aux(nkind), basis_set_ao(nkind))
CALL basis_set_list_setup(basis_set_ri_aux, "RI_AUX", qs_kind_set)
CALL get_particle_set(particle_set, qs_kind_set, nsgf=sizes_RI, basis=basis_set_ri_aux)
CALL basis_set_list_setup(basis_set_ao, "ORB", qs_kind_set)
CALL get_particle_set(particle_set, qs_kind_set, nsgf=sizes_AO, basis=basis_set_ao)
CALL pgf_block_sizes(atomic_kind_set, basis_set_ao, min_bsize, sizes_AO_split)
CALL pgf_block_sizes(atomic_kind_set, basis_set_ri_aux, min_bsize, sizes_RI_split)
DEALLOCATE (basis_set_ao, basis_set_ri_aux)
pdims = 0
CALL dbt_pgrid_create(para_env, pdims, pgrid_AO, &
tensor_dims=[SIZE(sizes_RI_split), SIZE(sizes_AO_split), SIZE(sizes_AO_split)])
pdims_2d = 0
CALL mp_dims_create(para_env%num_pe, pdims_2d)
! we iterate over MO blocks for saving memory during contraction, thus we should not parallelize over MO dimension
pdims = [pdims_2d(1), pdims_2d(2), 1]
CALL dbt_pgrid_create(para_env, pdims, pgrid_MO, &
tensor_dims=[SIZE(sizes_RI_split), SIZE(sizes_AO_split), 1])
pdims_2d = 0
CALL dbt_pgrid_create(para_env, pdims_2d, pgrid_2d, &
tensor_dims=[SIZE(sizes_AO_split), nmo])
CALL create_3c_tensor(t_3c_overl_int_ao_ao, dist1, dist2, dist3, pgrid_AO, &
sizes_RI_split, sizes_AO_split, sizes_AO_split, [1, 2], [3], name="(RI AO | AO)")
DEALLOCATE (dist1, dist2, dist3)
IF (.NOT. qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
CALL create_3c_tensor(t_3c_overl_int_ao_mo, dist1, dist2, dist3, pgrid_AO, &
sizes_RI_split, sizes_AO_split, sizes_MO_1, [1, 2], [3], name="(RI AO | MO)")
DEALLOCATE (dist1, dist2, dist3)
END IF
CALL create_3c_tensor(t_3c_overl_int_gw_RI, dist1, dist2, dist3, pgrid_MO, &
sizes_RI_split, sizes_AO_split, sizes_MO, [1], [2, 3], name="(RI | AO MO)")
DEALLOCATE (dist1, dist2, dist3)
CALL create_3c_tensor(t_3c_overl_int_gw_AO, dist1, dist2, dist3, pgrid_MO, &
sizes_AO_split, sizes_RI_split, sizes_MO, [1], [2, 3], name="(AO | RI MO)")
DEALLOCATE (dist1, dist2, dist3)
CALL dbt_pgrid_destroy(pgrid_AO)
CALL dbt_pgrid_destroy(pgrid_MO)
CALL create_2c_tensor(mo_coeff_gw_t, dist1, dist2, pgrid_2d, sizes_AO_split, sizes_MO_1, name="(AO|MO)")
DEALLOCATE (dist1, dist2)
CALL dbt_pgrid_destroy(pgrid_2d)
CALL dbt_create(mat_mo_coeff_gw, mo_coeff_gw_t_tmp, name="MO coeffs")
CALL dbt_copy_matrix_to_tensor(mat_mo_coeff_gw, mo_coeff_gw_t_tmp)
CALL dbt_copy(mo_coeff_gw_t_tmp, mo_coeff_gw_t)
bounds(1, 1) = homo - gw_corr_lev_occ + 1
bounds(2, 1) = homo + gw_corr_lev_virt
CALL dbt_get_info(t_3c_overl_int_ao_ao, nfull_total=bounds_3c)
ibounds(:, 1) = [1, bounds_3c(1)]
ibounds(:, 3) = [1, bounds_3c(3)]
cut_memory = SIZE(starts_array_mc)
IF (.NOT. qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
DO i_mem = 1, cut_memory
CALL decompress_tensor(t_3c_overl_int(1, 1), t_3c_O_ind(1, 1, i_mem)%ind, t_3c_O_compressed(1, 1, i_mem), &
qs_env%mp2_env%ri_rpa_im_time%eps_compress)
ibounds(:, 2) = [starts_array_mc(i_mem), ends_array_mc(i_mem)]
CALL dbt_copy(t_3c_overl_int(1, 1), t_3c_overl_int_ao_ao, move_data=.TRUE.)
CALL dbt_contract(1.0_dp, mo_coeff_gw_t, t_3c_overl_int_ao_ao, 1.0_dp, &
t_3c_overl_int_ao_mo, contract_1=[1], notcontract_1=[2], &
contract_2=[3], notcontract_2=[1, 2], map_1=[3], map_2=[1, 2], &
bounds_2=ibounds, move_data=.FALSE., unit_nr=unit_nr_prv)
END DO
END IF
CALL cp_fm_release(fm_mat_mo_coeff_gw)
IF (do_ic_model) THEN
pdims = 0
CALL dbt_pgrid_create(para_env, pdims, pgrid_ic, &
tensor_dims=[SIZE(sizes_RI_split), nmo, nmo])
CALL create_3c_tensor(t_3c_overl_int_mo_ao, dist1, dist2, dist3, pgrid_ic, &
sizes_RI_split, sizes_MO_1, sizes_AO_split, [1, 2], [3], name="(RI MO | AO)")
DEALLOCATE (dist1, dist2, dist3)
CALL create_3c_tensor(t_3c_overl_int_mo_mo, dist1, dist2, dist3, pgrid_ic, &
sizes_RI_split, sizes_MO_1, sizes_MO_1, [1, 2], [3], name="(RI MO | MO)")
DEALLOCATE (dist1, dist2, dist3)
CALL dbt_create(t_3c_overl_int_mo_mo, t_3c_overl_nnP_ic)
CALL create_3c_tensor(t_3c_overl_nnP_ic_reflected, dist1, dist2, dist3, pgrid_ic, &
sizes_RI_split, sizes_MO_1, sizes_MO_1, [1], [2, 3], name="(RI | MO MO)")
DEALLOCATE (dist1, dist2, dist3)
CALL dbt_pgrid_destroy(pgrid_ic)
CALL dbt_copy(t_3c_overl_int_ao_mo, t_3c_overl_int_mo_ao, order=[1, 3, 2])
CALL dbt_contract(1.0_dp, mo_coeff_gw_t, t_3c_overl_int_mo_ao, 0.0_dp, &
t_3c_overl_int_mo_mo, contract_1=[1], notcontract_1=[2], &
contract_2=[3], notcontract_2=[1, 2], map_1=[3], map_2=[1, 2], &
bounds_2=bounds, move_data=.FALSE., unit_nr=unit_nr_prv)
CALL dbt_copy(t_3c_overl_int_mo_mo, t_3c_overl_nnP_ic)
NULLIFY (mat_mo_coeff_gw_reflected)
CALL dbcsr_init_p(mat_mo_coeff_gw_reflected)
CALL cp_dbcsr_m_by_n_from_row_template(mat_mo_coeff_gw_reflected, template=matrix_s(1)%matrix, n=nmo, &
sym=dbcsr_type_no_symmetry)
CALL reflect_mat_row(mat_mo_coeff_gw_reflected, mat_mo_coeff_gw, para_env, qs_env, unit_nr, do_alpha=my_do_alpha)
! normalize reflected MOs (they are not properly normalized since high angular momentum basis functions
! of the image molecule are not exactly reflected at the image plane (sign problem in p_z function)
CALL dbcsr_create(matrix=mat_work, template=mat_mo_coeff_gw_reflected, matrix_type=dbcsr_type_no_symmetry)
CALL dbcsr_get_info(mat_work, distribution=dist_templ, nblkcols_total=size_MO, col_blk_size=sizes_MO_blocked)
CALL dbcsr_distribution_get(dist_templ, nprows=nprows, npcols=npcols)
ALLOCATE (distp_1(size_MO), distp_2(size_MO))
CALL dbt_default_distvec(size_MO, nprows, sizes_MO_blocked, distp_1)
CALL dbt_default_distvec(size_MO, npcols, sizes_MO_blocked, distp_2)
CALL dbcsr_distribution_new(dist, template=dist_templ, row_dist=distp_1, col_dist=distp_2, reuse_arrays=.TRUE.)
ALLOCATE (sizes_MO_p1(size_MO))
ALLOCATE (sizes_MO_p2(size_MO))
sizes_MO_p1(:) = sizes_MO_blocked
sizes_MO_p2(:) = sizes_MO_blocked
CALL dbcsr_create(mat_norm, "mo norm", dist, dbcsr_type_no_symmetry, sizes_MO_p1, sizes_MO_p2, &
reuse_arrays=.TRUE.)
CALL dbcsr_distribution_release(dist)
CALL dbcsr_multiply("N", "N", 1.0_dp, matrix_s(1)%matrix, mat_mo_coeff_gw_reflected, 0.0_dp, mat_work)
CALL dbcsr_multiply("T", "N", 1.0_dp, mat_mo_coeff_gw_reflected, mat_work, 0.0_dp, mat_norm)
CALL dbcsr_release(mat_work)
ALLOCATE (norm(nmo))
norm = 0.0_dp
CALL dbcsr_get_diag(mat_norm, norm)
CALL para_env%sum(norm)
DO imo = bounds(1, 1), bounds(2, 1)
norm(imo) = 1.0_dp/SQRT(norm(imo))
END DO
CALL dbcsr_create(mat_norm_diag, template=mat_norm)
CALL dbcsr_release(mat_norm)
CALL dbcsr_add_on_diag(mat_norm_diag, 1.0_dp)
CALL dbcsr_set_diag(mat_norm_diag, norm)
CALL dbcsr_create(mat_mo_coeff_gw_reflected_norm, template=mat_mo_coeff_gw_reflected)
CALL dbcsr_multiply("N", "N", 1.0_dp, mat_mo_coeff_gw_reflected, mat_norm_diag, 0.0_dp, mat_mo_coeff_gw_reflected_norm)
CALL dbcsr_release(mat_norm_diag)
CALL dbcsr_filter(mat_mo_coeff_gw_reflected_norm, 1.0E-20_dp)
CALL dbt_copy_matrix_to_tensor(mat_mo_coeff_gw_reflected_norm, mo_coeff_gw_t_tmp)
CALL dbcsr_release(mat_mo_coeff_gw_reflected_norm)
CALL dbt_copy(mo_coeff_gw_t_tmp, mo_coeff_gw_t)
CALL dbt_contract(1.0_dp, mo_coeff_gw_t, t_3c_overl_int_ao_ao, 0.0_dp, &
t_3c_overl_int_ao_mo, contract_1=[1], notcontract_1=[2], &
contract_2=[3], notcontract_2=[1, 2], map_1=[3], map_2=[1, 2], &
bounds_2=bounds, move_data=.FALSE., unit_nr=unit_nr_prv)
CALL dbt_copy(t_3c_overl_int_ao_mo, t_3c_overl_int_mo_ao, order=[1, 3, 2])
CALL dbt_contract(1.0_dp, mo_coeff_gw_t, t_3c_overl_int_mo_ao, 0.0_dp, &
t_3c_overl_int_mo_mo, contract_1=[1], notcontract_1=[2], &
contract_2=[3], notcontract_2=[1, 2], map_1=[3], map_2=[1, 2], &
bounds_2=bounds, move_data=.FALSE., unit_nr=unit_nr_prv)
CALL dbt_copy(t_3c_overl_int_mo_mo, t_3c_overl_nnP_ic_reflected)
CALL dbt_destroy(t_3c_overl_int_mo_ao)
CALL dbt_destroy(t_3c_overl_int_mo_mo)
CALL dbcsr_release_p(mat_mo_coeff_gw_reflected)
END IF
IF (.NOT. qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
CALL alloc_containers(t_3c_O_mo_compressed, 1)
CALL get_tensor_occupancy(t_3c_overl_int_ao_mo, nze, occ)
memory_3c = 0.0_dp
CALL compress_tensor(t_3c_overl_int_ao_mo, t_3c_O_mo_ind, t_3c_O_mo_compressed, &
qs_env%mp2_env%ri_rpa_im_time%eps_compress, memory_3c)
CALL para_env%sum(memory_3c)
compression_factor = REAL(nze, dp)*1.0E-06*8.0_dp/memory_3c
IF (unit_nr > 0) THEN
WRITE (UNIT=unit_nr, FMT="((T3,A,T66,F11.2,A4))") &
"MEMORY_INFO| Memory of MO-contracted tensor (compressed):", memory_3c, ' MiB'
WRITE (UNIT=unit_nr, FMT="((T3,A,T60,F21.2))") &
"MEMORY_INFO| Compression factor: ", compression_factor
END IF
END IF
CALL dbcsr_release_p(mat_mo_coeff_gw)
CALL dbt_destroy(t_3c_overl_int_ao_ao)
CALL dbt_destroy(mo_coeff_gw_t)
CALL dbt_destroy(mo_coeff_gw_t_tmp)
CALL timestop(handle)
END SUBROUTINE
! **************************************************************************************************
!> \brief reflect from V = (A,B|B,A) to V_reflected = (B,A|A,B) where A belongs to the block of the molecule
!> and B to the off diagonal block between molecule and image of the molecule
!> \param mat_reflected ...
!> \param mat_orig ...
!> \param para_env ...
!> \param qs_env ...
!> \param unit_nr ...
!> \param do_alpha ...
! **************************************************************************************************
SUBROUTINE reflect_mat_row(mat_reflected, mat_orig, para_env, qs_env, unit_nr, do_alpha)
TYPE(dbcsr_type), INTENT(INOUT) :: mat_reflected
TYPE(dbcsr_type), INTENT(IN) :: mat_orig
TYPE(mp_para_env_type), INTENT(IN) :: para_env
TYPE(qs_environment_type), POINTER :: qs_env
INTEGER, INTENT(IN) :: unit_nr
LOGICAL, INTENT(IN) :: do_alpha
CHARACTER(LEN=*), PARAMETER :: routineN = 'reflect_mat_row'
INTEGER :: block, block_size, col, col_rec, col_size, handle, i_atom, i_block, imepos, &
j_atom, natom, nblkcols_total, nblkrows_total, offset, row, row_rec, row_reflected, &
row_size
INTEGER, ALLOCATABLE, DIMENSION(:) :: block_counter, entry_counter, image_atom, &
num_blocks_rec, num_blocks_send, num_entries_rec, num_entries_send, sizes_rec, sizes_send
INTEGER, DIMENSION(:), POINTER :: col_blk_sizes, row_blk_sizes
LOGICAL :: found_image_atom
REAL(KIND=dp) :: avg_z_dist, delta, eps_dist2, &
min_z_dist, ra(3), rb(3), sum_z, &
z_reflection
REAL(KIND=dp), DIMENSION(:, :), POINTER :: data_block
TYPE(cell_type), POINTER :: cell
TYPE(dbcsr_iterator_type) :: iter
TYPE(integ_mat_buffer_type), ALLOCATABLE, &
DIMENSION(:) :: buffer_rec, buffer_send
TYPE(mp_request_type), DIMENSION(:, :), POINTER :: req_array
TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
CALL timeset(routineN, handle)
CALL dbcsr_reserve_all_blocks(mat_reflected)
CALL get_qs_env(qs_env, cell=cell, &
particle_set=particle_set)
! first check, whether we have an image molecule
CALL dbcsr_get_info(mat_orig, &
nblkrows_total=nblkrows_total, &
nblkcols_total=nblkcols_total, &
row_blk_size=row_blk_sizes, &
col_blk_size=col_blk_sizes)
natom = SIZE(particle_set)
CPASSERT(natom == nblkrows_total)
eps_dist2 = qs_env%mp2_env%ri_g0w0%eps_dist
eps_dist2 = eps_dist2*eps_dist2
sum_z = 0.0_dp
DO i_atom = 1, natom
ra(:) = pbc(particle_set(i_atom)%r, cell)
sum_z = sum_z + ra(3)
END DO
z_reflection = sum_z/REAL(natom, KIND=dp)
sum_z = 0.0_dp
DO i_atom = 1, natom
ra(:) = pbc(particle_set(i_atom)%r, cell)
sum_z = sum_z + ABS(ra(3) - z_reflection)
END DO
avg_z_dist = sum_z/REAL(natom, KIND=dp)
min_z_dist = avg_z_dist
DO i_atom = 1, natom
ra(:) = pbc(particle_set(i_atom)%r, cell)
IF (ABS(ra(3) - z_reflection) < min_z_dist) THEN
min_z_dist = ABS(ra(3) - z_reflection)
END IF
END DO
IF (unit_nr > 0 .AND. do_alpha) THEN
WRITE (unit_nr, '(T3,A,T70,F9.2,A2)') 'IC_MODEL| Average distance of the molecule to the image plane:', &
avg_z_dist*0.529_dp, ' A'
WRITE (unit_nr, '(T3,A,T70,F9.2,A2)') 'IC_MODEL| Minimum distance of the molecule to the image plane:', &
min_z_dist*0.529_dp, ' A'
END IF
ALLOCATE (image_atom(nblkrows_total))
image_atom = 0
DO i_atom = 1, natom
found_image_atom = .FALSE.
ra(:) = pbc(particle_set(i_atom)%r, cell)
DO j_atom = 1, natom
rb(:) = pbc(particle_set(j_atom)%r, cell)
delta = (ra(1) - rb(1))**2 + (ra(2) - rb(2))**2 + (ra(3) + rb(3) - 2.0_dp*z_reflection)**2
! SQRT(delta) < eps_dist
IF (delta < eps_dist2) THEN
! this CPASSERT ensures that there is at most one image atom for each atom
CPASSERT(.NOT. found_image_atom)
image_atom(i_atom) = j_atom
found_image_atom = .TRUE.
! check whether we have the same basis at the image atom
! if this is wrong, check whether you have the same basis sets for the molecule and the image
CPASSERT(row_blk_sizes(i_atom) == row_blk_sizes(j_atom))
END IF
END DO
! this CPASSERT ensures that there is at least one image atom for each atom
CPASSERT(found_image_atom)
END DO
ALLOCATE (buffer_rec(0:para_env%num_pe - 1))
ALLOCATE (buffer_send(0:para_env%num_pe - 1))
ALLOCATE (num_entries_rec(0:para_env%num_pe - 1))
ALLOCATE (num_blocks_rec(0:para_env%num_pe - 1))
ALLOCATE (num_entries_send(0:para_env%num_pe - 1))
ALLOCATE (num_blocks_send(0:para_env%num_pe - 1))
num_entries_rec = 0
num_blocks_rec = 0
num_entries_send = 0
num_blocks_send = 0
CALL dbcsr_iterator_start(iter, mat_orig)
DO WHILE (dbcsr_iterator_blocks_left(iter))
CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
row_size=row_size, col_size=col_size)
row_reflected = image_atom(row)
CALL dbcsr_get_stored_coordinates(mat_reflected, row_reflected, col, imepos)
num_entries_send(imepos) = num_entries_send(imepos) + row_size*col_size
num_blocks_send(imepos) = num_blocks_send(imepos) + 1
END DO
CALL dbcsr_iterator_stop(iter)
IF (para_env%num_pe > 1) THEN
ALLOCATE (sizes_rec(0:2*para_env%num_pe - 1))
ALLOCATE (sizes_send(0:2*para_env%num_pe - 1))
DO imepos = 0, para_env%num_pe - 1
sizes_send(2*imepos) = num_entries_send(imepos)
sizes_send(2*imepos + 1) = num_blocks_send(imepos)
END DO
CALL para_env%alltoall(sizes_send, sizes_rec, 2)
DO imepos = 0, para_env%num_pe - 1
num_entries_rec(imepos) = sizes_rec(2*imepos)
num_blocks_rec(imepos) = sizes_rec(2*imepos + 1)
END DO
DEALLOCATE (sizes_rec, sizes_send)
ELSE
num_entries_rec(0) = num_entries_send(0)
num_blocks_rec(0) = num_blocks_send(0)
END IF
! allocate data message and corresponding indices
DO imepos = 0, para_env%num_pe - 1
ALLOCATE (buffer_rec(imepos)%msg(num_entries_rec(imepos)))
buffer_rec(imepos)%msg = 0.0_dp
ALLOCATE (buffer_send(imepos)%msg(num_entries_send(imepos)))
buffer_send(imepos)%msg = 0.0_dp
ALLOCATE (buffer_rec(imepos)%indx(num_blocks_rec(imepos), 3))
buffer_rec(imepos)%indx = 0
ALLOCATE (buffer_send(imepos)%indx(num_blocks_send(imepos), 3))
buffer_send(imepos)%indx = 0
END DO
ALLOCATE (block_counter(0:para_env%num_pe - 1))
block_counter(:) = 0
ALLOCATE (entry_counter(0:para_env%num_pe - 1))
entry_counter(:) = 0
CALL dbcsr_iterator_start(iter, mat_orig)
DO WHILE (dbcsr_iterator_blocks_left(iter))
CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
row_size=row_size, col_size=col_size)
row_reflected = image_atom(row)
CALL dbcsr_get_stored_coordinates(mat_reflected, row_reflected, col, imepos)
block_size = row_size*col_size
offset = entry_counter(imepos)
buffer_send(imepos)%msg(offset + 1:offset + block_size) = &
RESHAPE(data_block(1:row_size, 1:col_size), (/block_size/))
block = block_counter(imepos) + 1
buffer_send(imepos)%indx(block, 1) = row_reflected
buffer_send(imepos)%indx(block, 2) = col
buffer_send(imepos)%indx(block, 3) = offset
entry_counter(imepos) = entry_counter(imepos) + block_size
block_counter(imepos) = block_counter(imepos) + 1
END DO
CALL dbcsr_iterator_stop(iter)
ALLOCATE (req_array(1:para_env%num_pe, 4))
CALL communicate_buffer(para_env, num_entries_rec, num_entries_send, buffer_rec, buffer_send, req_array)
DEALLOCATE (req_array)
! fill the reflected matrix
DO imepos = 0, para_env%num_pe - 1
DO i_block = 1, num_blocks_rec(imepos)
row_rec = buffer_rec(imepos)%indx(i_block, 1)
col_rec = buffer_rec(imepos)%indx(i_block, 2)
CALL dbcsr_iterator_start(iter, mat_reflected)
DO WHILE (dbcsr_iterator_blocks_left(iter))
CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
row_size=row_size, col_size=col_size)
IF (row_rec == row .AND. col_rec == col) THEN
offset = buffer_rec(imepos)%indx(i_block, 3)
data_block(:, :) = RESHAPE(buffer_rec(imepos)%msg(offset + 1:offset + row_size*col_size), &
(/row_size, col_size/))
END IF
END DO
CALL dbcsr_iterator_stop(iter)
END DO
END DO
DO imepos = 0, para_env%num_pe - 1
DEALLOCATE (buffer_rec(imepos)%msg)
DEALLOCATE (buffer_rec(imepos)%indx)
DEALLOCATE (buffer_send(imepos)%msg)
DEALLOCATE (buffer_send(imepos)%indx)
END DO
DEALLOCATE (buffer_rec, buffer_send)
DEALLOCATE (block_counter, entry_counter)
DEALLOCATE (num_entries_rec)
DEALLOCATE (num_blocks_rec)
DEALLOCATE (num_entries_send)
DEALLOCATE (num_blocks_send)
CALL timestop(handle)
END SUBROUTINE
! **************************************************************************************************
!> \brief ...
!> \param qs_env ...
!> \param atom_from_basis_index ...
!> \param basis_size ...
!> \param basis_type ...
!> \param first_bf_from_atom ...
! **************************************************************************************************
SUBROUTINE get_atom_index_from_basis_function_index(qs_env, atom_from_basis_index, basis_size, &
basis_type, first_bf_from_atom)
TYPE(qs_environment_type), POINTER :: qs_env
INTEGER, ALLOCATABLE, DIMENSION(:) :: atom_from_basis_index
INTEGER :: basis_size
CHARACTER(LEN=*) :: basis_type
INTEGER, ALLOCATABLE, DIMENSION(:), OPTIONAL :: first_bf_from_atom
INTEGER :: iatom, LLL, natom, nkind
INTEGER, DIMENSION(:), POINTER :: row_blk_end, row_blk_start
TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER :: basis_set
TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
NULLIFY (qs_kind_set, particle_set)
CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, natom=natom, nkind=nkind, &
particle_set=particle_set)
ALLOCATE (row_blk_start(natom))
ALLOCATE (row_blk_end(natom))
ALLOCATE (basis_set(nkind))
CALL basis_set_list_setup(basis_set, basis_type, qs_kind_set)
CALL get_particle_set(particle_set, qs_kind_set, first_sgf=row_blk_start, last_sgf=row_blk_end, &
basis=basis_set)
DO LLL = 1, basis_size
DO iatom = 1, natom
IF (LLL >= row_blk_start(iatom) .AND. LLL <= row_blk_end(iatom)) THEN
atom_from_basis_index(LLL) = iatom
END IF
END DO
END DO
IF (PRESENT(first_bf_from_atom)) first_bf_from_atom(1:natom) = row_blk_start(:)
DEALLOCATE (basis_set)
DEALLOCATE (row_blk_start)
DEALLOCATE (row_blk_end)
END SUBROUTINE get_atom_index_from_basis_function_index
! **************************************************************************************************
!> \brief ...
!> \param weight_re ...
!> \param weight_im ...
!> \param num_cells ...
!> \param iatom ...
!> \param jatom ...
!> \param xkp ...
!> \param wkp_W ...
!> \param cell ...
!> \param index_to_cell ...
!> \param hmat ...
!> \param particle_set ...
! **************************************************************************************************
SUBROUTINE compute_weight_re_im(weight_re, weight_im, &
num_cells, iatom, jatom, xkp, wkp_W, &
cell, index_to_cell, hmat, particle_set)
REAL(KIND=dp) :: weight_re, weight_im
INTEGER :: num_cells, iatom, jatom
REAL(KIND=dp), DIMENSION(3) :: xkp
REAL(KIND=dp) :: wkp_W
TYPE(cell_type), POINTER :: cell
INTEGER, DIMENSION(:, :), POINTER :: index_to_cell
REAL(KIND=dp), DIMENSION(3, 3) :: hmat
TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_weight_re_im'
INTEGER :: handle, icell, n_equidistant_cells, &
xcell, ycell, zcell
REAL(KIND=dp) :: abs_rab_cell, abs_rab_cell_min, arg
REAL(KIND=dp), DIMENSION(3) :: cell_vector, rab_cell_i
CALL timeset(routineN, handle)
weight_re = 0.0_dp
weight_im = 0.0_dp
abs_rab_cell_min = 1.0E10_dp
n_equidistant_cells = 0
DO icell = 1, num_cells
xcell = index_to_cell(1, icell)
ycell = index_to_cell(2, icell)
zcell = index_to_cell(3, icell)
cell_vector(1:3) = MATMUL(hmat, REAL((/xcell, ycell, zcell/), dp))
rab_cell_i(1:3) = pbc(particle_set(iatom)%r(1:3), cell) - &
(pbc(particle_set(jatom)%r(1:3), cell) + cell_vector(1:3))
abs_rab_cell = SQRT(rab_cell_i(1)**2 + rab_cell_i(2)**2 + rab_cell_i(3)**2)
IF (abs_rab_cell < abs_rab_cell_min) THEN
abs_rab_cell_min = abs_rab_cell
END IF
END DO
DO icell = 1, num_cells
xcell = index_to_cell(1, icell)
ycell = index_to_cell(2, icell)
zcell = index_to_cell(3, icell)
cell_vector(1:3) = MATMUL(hmat, REAL((/xcell, ycell, zcell/), dp))
rab_cell_i(1:3) = pbc(particle_set(iatom)%r(1:3), cell) - &
(pbc(particle_set(jatom)%r(1:3), cell) + cell_vector(1:3))
abs_rab_cell = SQRT(rab_cell_i(1)**2 + rab_cell_i(2)**2 + rab_cell_i(3)**2)
IF (abs_rab_cell < abs_rab_cell_min + 0.1_dp) THEN
arg = REAL(xcell, dp)*xkp(1) + REAL(ycell, dp)*xkp(2) + REAL(zcell, dp)*xkp(3)
weight_re = weight_re + wkp_W*COS(twopi*arg)
weight_im = weight_im + wkp_W*SIN(twopi*arg)
n_equidistant_cells = n_equidistant_cells + 1
END IF
END DO
weight_re = weight_re/REAL(n_equidistant_cells, KIND=dp)
weight_im = weight_im/REAL(n_equidistant_cells, KIND=dp)
CALL timestop(handle)
END SUBROUTINE compute_weight_re_im
END MODULE rpa_gw_im_time_util