-
Notifications
You must be signed in to change notification settings - Fork 1
/
qs_tddfpt2_soc_utils.F
573 lines (494 loc) · 26.7 KB
/
qs_tddfpt2_soc_utils.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Utilities absorption spectroscopy using TDDFPT with SOC
!> \author JRVogt (12.2023)
! **************************************************************************************************
MODULE qs_tddfpt2_soc_utils
USE cp_blacs_env, ONLY: cp_blacs_env_type
USE cp_cfm_types, ONLY: cp_cfm_get_info,&
cp_cfm_get_submatrix,&
cp_cfm_type
USE cp_control_types, ONLY: tddfpt2_control_type
USE cp_dbcsr_api, ONLY: dbcsr_copy,&
dbcsr_create,&
dbcsr_desymmetrize,&
dbcsr_get_info,&
dbcsr_p_type,&
dbcsr_release,&
dbcsr_type
USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
copy_fm_to_dbcsr,&
cp_dbcsr_sm_fm_multiply,&
dbcsr_allocate_matrix_set,&
dbcsr_deallocate_matrix_set
USE cp_fm_basic_linalg, ONLY: cp_fm_schur_product
USE cp_fm_struct, ONLY: cp_fm_struct_create,&
cp_fm_struct_release,&
cp_fm_struct_type
USE cp_fm_types, ONLY: cp_fm_create,&
cp_fm_get_info,&
cp_fm_release,&
cp_fm_set_all,&
cp_fm_to_fm,&
cp_fm_to_fm_submat,&
cp_fm_type
USE input_constants, ONLY: tddfpt_dipole_berry,&
tddfpt_dipole_length,&
tddfpt_dipole_velocity
USE kinds, ONLY: dp
USE message_passing, ONLY: mp_para_env_type
USE moments_utils, ONLY: get_reference_point
USE parallel_gemm_api, ONLY: parallel_gemm
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_ks_types, ONLY: qs_ks_env_type
USE qs_neighbor_list_types, ONLY: neighbor_list_set_p_type
USE qs_operators_ao, ONLY: p_xyz_ao,&
rRc_xyz_ao
USE qs_overlap, ONLY: build_overlap_matrix
USE qs_tddfpt2_soc_types, ONLY: soc_env_type
USE qs_tddfpt2_types, ONLY: tddfpt_ground_state_mos
!$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_tddfpt2_soc_utils'
PUBLIC :: soc_dipole_operator, soc_contract_evect, resort_evects, dip_vel_op
!A helper type for SOC
TYPE dbcsr_soc_package_type
TYPE(dbcsr_type), POINTER :: dbcsr_sg => Null()
TYPE(dbcsr_type), POINTER :: dbcsr_tp => Null()
TYPE(dbcsr_type), POINTER :: dbcsr_sc => Null()
TYPE(dbcsr_type), POINTER :: dbcsr_sf => Null()
TYPE(dbcsr_type), POINTER :: dbcsr_prod => Null()
TYPE(dbcsr_type), POINTER :: dbcsr_ovlp => Null()
TYPE(dbcsr_type), POINTER :: dbcsr_tmp => Null()
TYPE(dbcsr_type), POINTER :: dbcsr_work => Null()
END TYPE dbcsr_soc_package_type
CONTAINS
! **************************************************************************************************
!> \brief Build the atomic dipole operator
!> \param soc_env ...
!> \param tddfpt_control informations on how to build the operaot
!> \param qs_env Qucikstep environment
!> \param gs_mos ...
! **************************************************************************************************
SUBROUTINE soc_dipole_operator(soc_env, tddfpt_control, qs_env, gs_mos)
TYPE(soc_env_type), TARGET :: soc_env
TYPE(tddfpt2_control_type), POINTER :: tddfpt_control
TYPE(qs_environment_type), INTENT(IN), POINTER :: qs_env
TYPE(tddfpt_ground_state_mos), DIMENSION(:), &
INTENT(in) :: gs_mos
CHARACTER(len=*), PARAMETER :: routineN = 'soc_dipole_operator'
INTEGER :: dim_op, handle, i_dim, nao, nspin
REAL(kind=dp), DIMENSION(3) :: reference_point
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
CALL timeset(routineN, handle)
NULLIFY (matrix_s)
IF (tddfpt_control%dipole_form == tddfpt_dipole_berry) THEN
CPABORT("BERRY DIPOLE FORM NOT IMPLEMENTED FOR SOC")
END IF
!! ONLY RCS have been implemented, Therefore, nspin sould always be 1!
nspin = 1
!! Number of dimensions should be 3, unless multipole is implemented in the future
dim_op = 3
!! Initzilize the dipmat structure
CALL get_qs_env(qs_env, matrix_s=matrix_s)
CALL dbcsr_get_info(matrix_s(1)%matrix, nfullrows_total=nao)
ALLOCATE (soc_env%dipmat_ao(dim_op))
DO i_dim = 1, dim_op
ALLOCATE (soc_env%dipmat_ao(i_dim)%matrix)
CALL dbcsr_copy(soc_env%dipmat_ao(i_dim)%matrix, &
matrix_s(1)%matrix, &
name="dipole operator matrix")
END DO
SELECT CASE (tddfpt_control%dipole_form)
CASE (tddfpt_dipole_length)
!!This routine is analog to qs_tddfpt_prperties but only until the rRc_xyz_ao routine
!! This will lead to an operator within the nao x nao basis
!! qs_tddpft_properies uses nvirt x nocc
CALL get_reference_point(reference_point, qs_env=qs_env, &
reference=tddfpt_control%dipole_reference, &
ref_point=tddfpt_control%dipole_ref_point)
CALL rRc_xyz_ao(op=soc_env%dipmat_ao, qs_env=qs_env, rc=reference_point, order=1, &
minimum_image=.FALSE., soft=.FALSE.)
!! This will lead to S C^virt C^virt,T Q_q (vgl Strand et al., J. Chem Phys. 150, 044702, 2019)
CALL length_rep(qs_env, gs_mos, soc_env)
CASE (tddfpt_dipole_velocity)
!!This Routine calcluates the dipole Operator within the velocity-form within the ao basis
!!This Operation is only used in xas_tdp and qs_tddfpt_soc, lines uses rmc_x_p_xyz_ao
CALL p_xyz_ao(soc_env%dipmat_ao, qs_env, minimum_image=.FALSE.)
!! This will precomute SC^virt, (omega^a-omega^i)^-1 and C^virt dS/dq
CALL velocity_rep(qs_env, gs_mos, soc_env)
CASE DEFAULT
CPABORT("Unimplemented form of the dipole operator")
END SELECT
CALL timestop(handle)
END SUBROUTINE soc_dipole_operator
! **************************************************************************************************
!> \brief ...
!> \param qs_env ...
!> \param gs_mos ...
!> \param soc_env ...
! **************************************************************************************************
SUBROUTINE length_rep(qs_env, gs_mos, soc_env)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(tddfpt_ground_state_mos), DIMENSION(:), &
INTENT(in) :: gs_mos
TYPE(soc_env_type), TARGET :: soc_env
INTEGER :: ideriv, ispin, nao, nderivs, nspins
INTEGER, ALLOCATABLE, DIMENSION(:) :: nmo_virt
TYPE(cp_blacs_env_type), POINTER :: blacs_env
TYPE(cp_fm_struct_type), POINTER :: dip_struct, fm_struct
TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: S_mos_virt
TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :) :: dipole_op_mos_occ
TYPE(cp_fm_type), POINTER :: dipmat_tmp, wfm_ao_ao
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
TYPE(dbcsr_type), POINTER :: symm_tmp
TYPE(mp_para_env_type), POINTER :: para_env
CALL get_qs_env(qs_env, matrix_s=matrix_s, blacs_env=blacs_env, para_env=para_env)
nderivs = 3
nspins = 1 !!We only account for rcs, will be changed in the future
CALL dbcsr_get_info(matrix_s(1)%matrix, nfullrows_total=nao)
ALLOCATE (S_mos_virt(nspins), dipole_op_mos_occ(3, nspins), &
wfm_ao_ao, nmo_virt(nspins), symm_tmp, dipmat_tmp)
CALL cp_fm_struct_create(dip_struct, context=blacs_env, ncol_global=nao, nrow_global=nao, para_env=para_env)
CALL dbcsr_allocate_matrix_set(soc_env%dipmat, nderivs)
CALL dbcsr_desymmetrize(matrix_s(1)%matrix, symm_tmp)
DO ideriv = 1, nderivs
ALLOCATE (soc_env%dipmat(ideriv)%matrix)
CALL dbcsr_create(soc_env%dipmat(ideriv)%matrix, template=symm_tmp, &
name="contracted operator", matrix_type="N")
DO ispin = 1, nspins
CALL cp_fm_create(dipole_op_mos_occ(ideriv, ispin), matrix_struct=dip_struct)
END DO
END DO
CALL dbcsr_release(symm_tmp)
DEALLOCATE (symm_tmp)
DO ispin = 1, nspins
nmo_virt(ispin) = SIZE(gs_mos(ispin)%evals_virt)
CALL cp_fm_get_info(gs_mos(ispin)%mos_virt, matrix_struct=fm_struct)
CALL cp_fm_create(wfm_ao_ao, dip_struct)
CALL cp_fm_create(S_mos_virt(ispin), fm_struct)
CALL cp_dbcsr_sm_fm_multiply(matrix_s(1)%matrix, &
gs_mos(ispin)%mos_virt, &
S_mos_virt(ispin), &
ncol=nmo_virt(ispin), alpha=1.0_dp, beta=0.0_dp)
CALL parallel_gemm('N', 'T', nao, nao, nmo_virt(ispin), &
1.0_dp, S_mos_virt(ispin), gs_mos(ispin)%mos_virt, &
0.0_dp, wfm_ao_ao)
DO ideriv = 1, nderivs
CALL cp_fm_create(dipmat_tmp, dip_struct)
CALL copy_dbcsr_to_fm(soc_env%dipmat_ao(ideriv)%matrix, dipmat_tmp)
CALL parallel_gemm('N', 'T', nao, nao, nao, &
1.0_dp, wfm_ao_ao, dipmat_tmp, &
0.0_dp, dipole_op_mos_occ(ideriv, ispin))
CALL copy_fm_to_dbcsr(dipole_op_mos_occ(ideriv, ispin), soc_env%dipmat(ideriv)%matrix)
CALL cp_fm_release(dipmat_tmp)
END DO
CALL cp_fm_release(wfm_ao_ao)
DEALLOCATE (wfm_ao_ao)
END DO
CALL cp_fm_struct_release(dip_struct)
DO ispin = 1, nspins
CALL cp_fm_release(S_mos_virt(ispin))
DO ideriv = 1, nderivs
CALL cp_fm_release(dipole_op_mos_occ(ideriv, ispin))
END DO
END DO
DEALLOCATE (S_mos_virt, dipole_op_mos_occ, nmo_virt, dipmat_tmp)
END SUBROUTINE length_rep
! **************************************************************************************************
!> \brief ...
!> \param qs_env ...
!> \param gs_mos ...
!> \param soc_env ...
! **************************************************************************************************
SUBROUTINE velocity_rep(qs_env, gs_mos, soc_env)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(tddfpt_ground_state_mos), DIMENSION(:), &
INTENT(in) :: gs_mos
TYPE(soc_env_type), TARGET :: soc_env
INTEGER :: icol, ideriv, irow, ispin, n_occ, &
n_virt, nao, ncols_local, nderivs, &
nrows_local, nspins
INTEGER, DIMENSION(:), POINTER :: col_indices, row_indices
REAL(kind=dp) :: eval_occ
REAL(kind=dp), CONTIGUOUS, DIMENSION(:, :), &
POINTER :: local_data_ediff, local_data_wfm
TYPE(cp_blacs_env_type), POINTER :: blacs_env
TYPE(cp_fm_struct_type), POINTER :: ao_cvirt_struct, ao_nocc_struct, &
cvirt_ao_struct, fm_struct, scrm_struct
TYPE(cp_fm_type) :: scrm_fm, wfm_mo_virt_mo_occ
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s, scrm
TYPE(neighbor_list_set_p_type), DIMENSION(:), &
POINTER :: sab_orb
TYPE(qs_ks_env_type), POINTER :: ks_env
NULLIFY (scrm, scrm_struct, blacs_env, matrix_s, ao_cvirt_struct, ao_nocc_struct, cvirt_ao_struct)
nspins = 1
nderivs = 3
ALLOCATE (soc_env%SC(nspins), soc_env%CdS(nspins, nderivs), soc_env%ediff(nspins))
CALL get_qs_env(qs_env, ks_env=ks_env, sab_orb=sab_orb, blacs_env=blacs_env, matrix_s=matrix_s)
CALL dbcsr_get_info(matrix_s(1)%matrix, nfullrows_total=nao)
CALL cp_fm_struct_create(scrm_struct, nrow_global=nao, ncol_global=nao, &
context=blacs_env)
CALL cp_fm_get_info(gs_mos(1)%mos_virt, matrix_struct=ao_cvirt_struct)
CALL cp_fm_get_info(gs_mos(1)%mos_occ, matrix_struct=ao_nocc_struct)
CALL build_overlap_matrix(ks_env, matrix_s=scrm, nderivative=1, &
basis_type_a="ORB", basis_type_b="ORB", &
sab_nl=sab_orb)
DO ispin = 1, nspins
NULLIFY (fm_struct)
n_occ = SIZE(gs_mos(ispin)%evals_occ)
n_virt = SIZE(gs_mos(ispin)%evals_virt)
CALL cp_fm_struct_create(fm_struct, nrow_global=n_virt, &
ncol_global=n_occ, context=blacs_env)
CALL cp_fm_struct_create(cvirt_ao_struct, nrow_global=n_virt, &
ncol_global=nao, context=blacs_env)
CALL cp_fm_create(soc_env%ediff(ispin), fm_struct)
CALL cp_fm_create(wfm_mo_virt_mo_occ, fm_struct)
CALL cp_fm_create(soc_env%SC(ispin), ao_cvirt_struct)
CALL cp_dbcsr_sm_fm_multiply(matrix_s(1)%matrix, &
gs_mos(ispin)%mos_virt, &
soc_env%SC(ispin), &
ncol=n_virt, alpha=1.0_dp, beta=0.0_dp)
CALL cp_fm_get_info(soc_env%ediff(ispin), nrow_local=nrows_local, ncol_local=ncols_local, &
row_indices=row_indices, col_indices=col_indices, local_data=local_data_ediff)
CALL cp_fm_get_info(wfm_mo_virt_mo_occ, local_data=local_data_wfm)
!$OMP PARALLEL DO DEFAULT(NONE), &
!$OMP PRIVATE(eval_occ, icol, irow), &
!$OMP SHARED(col_indices, gs_mos, ispin, local_data_ediff, ncols_local, nrows_local, row_indices)
DO icol = 1, ncols_local
! E_occ_i ; imo_occ = col_indices(icol)
eval_occ = gs_mos(ispin)%evals_occ(col_indices(icol))
DO irow = 1, nrows_local
! ediff_inv_weights(a, i) = 1.0 / (E_virt_a - E_occ_i)
! imo_virt = row_indices(irow)
local_data_ediff(irow, icol) = 1.0_dp/(gs_mos(ispin)%evals_virt(row_indices(irow)) - eval_occ)
END DO
END DO
!$OMP END PARALLEL DO
DO ideriv = 1, nderivs
CALL cp_fm_create(soc_env%CdS(ispin, ideriv), cvirt_ao_struct)
CALL cp_fm_create(scrm_fm, scrm_struct)
CALL copy_dbcsr_to_fm(scrm(ideriv + 1)%matrix, scrm_fm)
CALL parallel_gemm('T', 'N', n_virt, nao, nao, 1.0_dp, gs_mos(ispin)%mos_virt, &
scrm_fm, 0.0_dp, soc_env%CdS(ispin, ideriv))
CALL cp_fm_release(scrm_fm)
END DO
CALL cp_fm_release(wfm_mo_virt_mo_occ)
CALL cp_fm_struct_release(fm_struct)
END DO
CALL dbcsr_deallocate_matrix_set(scrm)
CALL cp_fm_struct_release(scrm_struct)
CALL cp_fm_struct_release(cvirt_ao_struct)
END SUBROUTINE velocity_rep
! **************************************************************************************************
!> \brief This routine will construct the dipol operator within velocity representation
!> \param soc_env ..
!> \param qs_env ...
!> \param evec_fm ...
!> \param op ...
!> \param ideriv ...
!> \param tp ...
!> \param gs_coeffs ...
!> \param sggs_fm ...
! **************************************************************************************************
SUBROUTINE dip_vel_op(soc_env, qs_env, evec_fm, op, ideriv, tp, gs_coeffs, sggs_fm)
TYPE(soc_env_type), TARGET :: soc_env
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(cp_fm_type), DIMENSION(:, :), INTENT(IN) :: evec_fm
TYPE(dbcsr_type), INTENT(INOUT) :: op
INTEGER, INTENT(IN) :: ideriv
LOGICAL, INTENT(IN) :: tp
TYPE(cp_fm_type), OPTIONAL, POINTER :: gs_coeffs
TYPE(cp_fm_type), INTENT(INOUT), OPTIONAL :: sggs_fm
INTEGER :: iex, ispin, n_occ, n_virt, nao, nex
LOGICAL :: sggs
TYPE(cp_blacs_env_type), POINTER :: blacs_env
TYPE(cp_fm_struct_type), POINTER :: op_struct, virt_occ_struct
TYPE(cp_fm_type) :: CdSC, op_fm, SCWCdSC, WCdSC
TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :) :: WCdSC_tmp
TYPE(cp_fm_type), POINTER :: coeff
TYPE(mp_para_env_type), POINTER :: para_env
NULLIFY (virt_occ_struct, virt_occ_struct, op_struct, blacs_env, para_env, coeff)
IF (tp) THEN
coeff => soc_env%b_coeff
ELSE
coeff => soc_env%a_coeff
END IF
sggs = .FALSE.
IF (PRESENT(gs_coeffs)) sggs = .TRUE.
ispin = 1 !! only rcs availble
nex = SIZE(evec_fm, 2)
IF (.NOT. sggs) ALLOCATE (WCdSC_tmp(ispin, nex))
CALL get_qs_env(qs_env, blacs_env=blacs_env, para_env=para_env)
CALL cp_fm_get_info(soc_env%CdS(ispin, ideriv), ncol_global=nao, nrow_global=n_virt)
CALL cp_fm_get_info(evec_fm(1, 1), ncol_global=n_occ)
IF (sggs) THEN
CALL cp_fm_struct_create(virt_occ_struct, context=blacs_env, para_env=para_env, nrow_global=n_virt, &
ncol_global=n_occ)
CALL cp_fm_struct_create(op_struct, context=blacs_env, para_env=para_env, nrow_global=n_occ*nex, &
ncol_global=n_occ)
ELSE
CALL cp_fm_struct_create(virt_occ_struct, context=blacs_env, para_env=para_env, nrow_global=n_virt, &
ncol_global=n_occ*nex)
CALL cp_fm_struct_create(op_struct, context=blacs_env, para_env=para_env, nrow_global=n_occ*nex, &
ncol_global=n_occ*nex)
END IF
CALL cp_fm_create(CdSC, soc_env%ediff(ispin)%matrix_struct)
CALL cp_fm_create(op_fm, op_struct)
IF (sggs) THEN
CALL cp_fm_create(SCWCdSC, gs_coeffs%matrix_struct)
CALL cp_fm_create(WCdSC, soc_env%ediff(ispin)%matrix_struct)
CALL parallel_gemm('N', 'N', n_virt, n_occ, nao, 1.0_dp, soc_env%CdS(ispin, ideriv), &
gs_coeffs, 0.0_dp, CdSC)
CALL cp_fm_schur_product(CdSC, soc_env%ediff(ispin), WCdSC)
ELSE
CALL cp_fm_create(SCWCdSC, coeff%matrix_struct)
DO iex = 1, nex
CALL cp_fm_create(WCdSC_tmp(ispin, iex), soc_env%ediff(ispin)%matrix_struct)
CALL parallel_gemm('N', 'N', n_virt, n_occ, nao, 1.0_dp, soc_env%CdS(ispin, ideriv), &
evec_fm(ispin, iex), 0.0_dp, CdSC)
CALL cp_fm_schur_product(CdSC, soc_env%ediff(ispin), WCdSC_tmp(ispin, iex))
END DO
CALL cp_fm_create(WCdSC, virt_occ_struct)
CALL soc_contract_evect(WCdSC_tmp, WCdSC)
DO iex = 1, nex
CALL cp_fm_release(WCdSC_tmp(ispin, iex))
END DO
DEALLOCATE (WCdSC_tmp)
END IF
IF (sggs) THEN
CALL parallel_gemm('N', 'N', nao, n_occ, n_virt, 1.0_dp, soc_env%SC(ispin), WCdSC, 0.0_dp, SCWCdSC)
CALL parallel_gemm('T', 'N', n_occ*nex, n_occ, nao, 1.0_dp, soc_env%a_coeff, SCWCdSC, 0.0_dp, op_fm)
ELSE
CALL parallel_gemm('N', 'N', nao, n_occ*nex, n_virt, 1.0_dp, soc_env%SC(ispin), WCdSC, 0.0_dp, SCWCdSC)
CALL parallel_gemm('T', 'N', n_occ*nex, n_occ*nex, nao, 1.0_dp, coeff, SCWCdSC, 0.0_dp, op_fm)
END IF
IF (sggs) THEN
CALL cp_fm_to_fm(op_fm, sggs_fm)
ELSE
CALL copy_fm_to_dbcsr(op_fm, op)
END IF
CALL cp_fm_release(op_fm)
CALL cp_fm_release(WCdSC)
CALL cp_fm_release(SCWCdSC)
CALL cp_fm_release(CdSC)
CALL cp_fm_struct_release(virt_occ_struct)
CALL cp_fm_struct_release(op_struct)
END SUBROUTINE dip_vel_op
! **************************************************************************************************
!> \brief ...
!> \param fm_start ...
!> \param fm_res ...
! **************************************************************************************************
SUBROUTINE soc_contract_evect(fm_start, fm_res)
TYPE(cp_fm_type), DIMENSION(:, :), INTENT(in) :: fm_start
TYPE(cp_fm_type), INTENT(inout) :: fm_res
CHARACTER(len=*), PARAMETER :: routineN = 'soc_contract_evect'
INTEGER :: handle, ii, jj, nactive, nao, nspins, &
nstates, ntmp1, ntmp2
CALL timeset(routineN, handle)
nstates = SIZE(fm_start, 2)
nspins = SIZE(fm_start, 1)
CALL cp_fm_set_all(fm_res, 0.0_dp)
!! Evects are written into one matrix.
DO ii = 1, nstates
DO jj = 1, nspins
CALL cp_fm_get_info(fm_start(jj, ii), nrow_global=nao, ncol_global=nactive)
CALL cp_fm_get_info(fm_res, nrow_global=ntmp1, ncol_global=ntmp2)
CALL cp_fm_to_fm_submat(fm_start(jj, ii), &
fm_res, &
nao, nactive, &
1, 1, 1, &
1 + nactive*(ii - 1) + (jj - 1)*nao*nstates)
END DO !nspins
END DO !nsstates
CALL timestop(handle)
END SUBROUTINE soc_contract_evect
! **************************************************************************************************
!> \brief ...
!> \param vec ...
!> \param new_entry ...
!> \param res ...
!> \param res_int ...
! **************************************************************************************************
SUBROUTINE test_repetition(vec, new_entry, res, res_int)
INTEGER, DIMENSION(:), INTENT(IN) :: vec
INTEGER, INTENT(IN) :: new_entry
LOGICAL, INTENT(OUT) :: res
INTEGER, INTENT(OUT), OPTIONAL :: res_int
INTEGER :: i
res = .TRUE.
IF (PRESENT(res_int)) res_int = -1
DO i = 1, SIZE(vec)
IF (vec(i) == new_entry) THEN
res = .FALSE.
IF (PRESENT(res_int)) res_int = i
EXIT
END IF
END DO
END SUBROUTINE test_repetition
! **************************************************************************************************
!> \brief Used to find out, which state has which spin-multiplicity
!> \param evects_cfm ...
!> \param sort ...
! **************************************************************************************************
SUBROUTINE resort_evects(evects_cfm, sort)
TYPE(cp_cfm_type), INTENT(INOUT) :: evects_cfm
INTEGER, ALLOCATABLE, DIMENSION(:), INTENT(OUT) :: sort
COMPLEX(dp), ALLOCATABLE, DIMENSION(:, :) :: cpl_tmp
INTEGER :: i_rep, ii, jj, ntot, tmp
INTEGER, ALLOCATABLE, DIMENSION(:) :: rep_int
LOGICAL :: rep
REAL(dp) :: max_dev, max_wfn, wfn_sq
CALL cp_cfm_get_info(evects_cfm, nrow_global=ntot)
ALLOCATE (cpl_tmp(ntot, ntot))
ALLOCATE (sort(ntot), rep_int(ntot))
cpl_tmp = 0_dp
sort = 0
max_dev = 0.5
CALL cp_cfm_get_submatrix(evects_cfm, cpl_tmp)
DO jj = 1, ntot
rep_int = 0
tmp = 0
max_wfn = 0_dp
DO ii = 1, ntot
wfn_sq = ABS(REAL(cpl_tmp(ii, jj)**2 - AIMAG(cpl_tmp(ii, jj)**2)))
IF (max_wfn .LE. wfn_sq) THEN
CALL test_repetition(sort, ii, rep, rep_int(ii))
IF (rep) THEN
max_wfn = wfn_sq
tmp = ii
END IF
END IF
END DO
IF (tmp > 0) THEN
sort(jj) = tmp
ELSE
DO i_rep = 1, ntot
IF (rep_int(i_rep) > 0) THEN
max_wfn = ABS(REAL(cpl_tmp(sort(i_rep), jj)**2 - AIMAG(cpl_tmp(sort(i_rep), jj)**2))) - max_dev
DO ii = 1, ntot
wfn_sq = ABS(REAL(cpl_tmp(ii, jj)**2 - AIMAG(cpl_tmp(ii, jj)**2)))
IF ((max_wfn - wfn_sq)/max_wfn .LE. max_dev) THEN
CALL test_repetition(sort, ii, rep)
IF (rep .AND. ii /= i_rep) THEN
sort(jj) = sort(i_rep)
sort(i_rep) = ii
END IF
END IF
END DO
END IF
END DO
END IF
END DO
DEALLOCATE (cpl_tmp, rep_int)
END SUBROUTINE resort_evects
END MODULE qs_tddfpt2_soc_utils