-
Notifications
You must be signed in to change notification settings - Fork 1
/
qs_tddfpt2_operators.F
847 lines (721 loc) · 42 KB
/
qs_tddfpt2_operators.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
MODULE qs_tddfpt2_operators
USE admm_types, ONLY: admm_type
USE cell_types, ONLY: cell_type,&
pbc
USE cp_dbcsr_api, ONLY: &
dbcsr_create, dbcsr_filter, dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, &
dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_p_type, &
dbcsr_release, dbcsr_set, dbcsr_type, dbcsr_type_no_symmetry
USE cp_dbcsr_operations, ONLY: copy_fm_to_dbcsr,&
cp_dbcsr_plus_fm_fm_t,&
cp_dbcsr_sm_fm_multiply
USE cp_fm_basic_linalg, ONLY: cp_fm_column_scale,&
cp_fm_scale_and_add
USE cp_fm_struct, ONLY: cp_fm_struct_type
USE cp_fm_types, ONLY: cp_fm_create,&
cp_fm_get_info,&
cp_fm_release,&
cp_fm_to_fm,&
cp_fm_type
USE hartree_local_methods, ONLY: Vh_1c_gg_integrals
USE hartree_local_types, ONLY: hartree_local_type
USE hfx_admm_utils, ONLY: tddft_hfx_matrix
USE hfx_types, ONLY: hfx_type
USE input_section_types, ONLY: section_vals_get,&
section_vals_get_subs_vals,&
section_vals_type
USE kinds, ONLY: dp
USE message_passing, ONLY: mp_para_env_type
USE parallel_gemm_api, ONLY: parallel_gemm
USE particle_types, ONLY: particle_type
USE pw_env_types, ONLY: pw_env_get,&
pw_env_type
USE pw_methods, ONLY: pw_axpy,&
pw_multiply,&
pw_scale,&
pw_transfer,&
pw_zero
USE pw_poisson_methods, ONLY: pw_poisson_solve
USE pw_poisson_types, ONLY: pw_poisson_type
USE pw_pool_types, ONLY: pw_pool_type
USE pw_types, ONLY: pw_c1d_gs_type,&
pw_r3d_rs_type
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_kernel_types, ONLY: full_kernel_env_type
USE qs_local_rho_types, ONLY: local_rho_type
USE qs_rho0_ggrid, ONLY: integrate_vhg0_rspace
USE qs_rho_types, ONLY: qs_rho_get,&
qs_rho_type
USE qs_tddfpt2_stda_utils, ONLY: get_lowdin_x
USE qs_tddfpt2_subgroups, ONLY: tddfpt_subgroup_env_type
USE qs_tddfpt2_types, ONLY: tddfpt_ground_state_mos,&
tddfpt_work_matrices
USE xc, ONLY: xc_calc_2nd_deriv_analytical,&
xc_calc_2nd_deriv_numerical
USE xc_rho_set_types, ONLY: xc_rho_set_type,&
xc_rho_set_update
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_tddfpt2_operators'
LOGICAL, PARAMETER, PRIVATE :: debug_this_module = .FALSE.
! number of first derivative components (3: d/dx, d/dy, d/dz)
INTEGER, PARAMETER, PRIVATE :: nderivs = 3
INTEGER, PARAMETER, PRIVATE :: maxspins = 2
PUBLIC :: tddfpt_apply_energy_diff, tddfpt_apply_coulomb, tddfpt_apply_xc, tddfpt_apply_hfx, &
tddfpt_apply_xc_potential, tddfpt_apply_hfxlr_kernel, tddfpt_apply_hfxsr_kernel
! **************************************************************************************************
CONTAINS
! **************************************************************************************************
!> \brief Apply orbital energy difference term:
!> Aop_evects(spin,state) += KS(spin) * evects(spin,state) -
!> S * evects(spin,state) * diag(evals_occ(spin))
!> \param Aop_evects action of TDDFPT operator on trial vectors (modified on exit)
!> \param evects trial vectors C_{1,i}
!> \param S_evects S * C_{1,i}
!> \param gs_mos molecular orbitals optimised for the ground state (only occupied orbital
!> energies [component %evals_occ] are needed)
!> \param matrix_ks Kohn-Sham matrix
!> \par History
!> * 05.2016 initialise all matrix elements in one go [Sergey Chulkov]
!> * 03.2017 renamed from tddfpt_init_energy_diff(), altered prototype [Sergey Chulkov]
!> \note Based on the subroutine p_op_l1() which was originally created by
!> Thomas Chassaing on 08.2002.
! **************************************************************************************************
SUBROUTINE tddfpt_apply_energy_diff(Aop_evects, evects, S_evects, gs_mos, matrix_ks)
TYPE(cp_fm_type), DIMENSION(:, :), INTENT(in) :: Aop_evects, evects, S_evects
TYPE(tddfpt_ground_state_mos), DIMENSION(:), &
INTENT(in) :: gs_mos
TYPE(dbcsr_p_type), DIMENSION(:), INTENT(in) :: matrix_ks
CHARACTER(LEN=*), PARAMETER :: routineN = 'tddfpt_apply_energy_diff'
INTEGER :: handle, ispin, ivect, nactive, nao, &
nspins, nvects
TYPE(cp_fm_struct_type), POINTER :: matrix_struct
TYPE(cp_fm_type) :: hevec
CALL timeset(routineN, handle)
nspins = SIZE(evects, 1)
nvects = SIZE(evects, 2)
DO ispin = 1, nspins
CALL cp_fm_get_info(matrix=evects(ispin, 1), matrix_struct=matrix_struct, &
nrow_global=nao, ncol_global=nactive)
CALL cp_fm_create(hevec, matrix_struct)
DO ivect = 1, nvects
CALL cp_dbcsr_sm_fm_multiply(matrix_ks(ispin)%matrix, evects(ispin, ivect), &
Aop_evects(ispin, ivect), ncol=nactive, &
alpha=1.0_dp, beta=1.0_dp)
IF (ASSOCIATED(gs_mos(ispin)%evals_occ_matrix)) THEN
! orbital energy correction: evals_occ_matrix is not a diagonal matrix
CALL parallel_gemm('N', 'N', nao, nactive, nactive, 1.0_dp, &
S_evects(ispin, ivect), gs_mos(ispin)%evals_occ_matrix, &
0.0_dp, hevec)
ELSE
CALL cp_fm_to_fm(S_evects(ispin, ivect), hevec)
CALL cp_fm_column_scale(hevec, gs_mos(ispin)%evals_occ)
END IF
! KS * C1 - S * C1 * occupied_orbital_energies
CALL cp_fm_scale_and_add(1.0_dp, Aop_evects(ispin, ivect), -1.0_dp, hevec)
END DO
CALL cp_fm_release(hevec)
END DO
CALL timestop(handle)
END SUBROUTINE tddfpt_apply_energy_diff
! **************************************************************************************************
!> \brief Update v_rspace by adding coulomb term.
!> \param A_ia_rspace action of TDDFPT operator on the trial vector expressed in a plane wave
!> representation (modified on exit)
!> \param rho_ia_g response density in reciprocal space for the given trial vector
!> \param local_rho_set ...
!> \param hartree_local ...
!> \param qs_env ...
!> \param sub_env the full sub_environment needed for calculation
!> \param gapw Flag indicating GAPW cacluation
!> \param work_v_gspace work reciprocal-space grid to store Coulomb potential (modified on exit)
!> \param work_v_rspace work real-space grid to store Coulomb potential (modified on exit)
!> \par History
!> * 05.2016 compute all coulomb terms in one go [Sergey Chulkov]
!> * 03.2017 proceed excited states sequentially; minimise the number of conversions between
!> DBCSR and FM matrices [Sergey Chulkov]
!> * 06.2018 return the action expressed in the plane wave representation instead of the one
!> in the atomic basis set representation
!> \note Based on the subroutine kpp1_calc_k_p_p1() which was originally created by
!> Mohamed Fawzi on 10.2002.
! **************************************************************************************************
SUBROUTINE tddfpt_apply_coulomb(A_ia_rspace, rho_ia_g, local_rho_set, hartree_local, &
qs_env, sub_env, gapw, work_v_gspace, work_v_rspace)
TYPE(pw_r3d_rs_type), DIMENSION(:), INTENT(INOUT) :: A_ia_rspace
TYPE(pw_c1d_gs_type), INTENT(INOUT) :: rho_ia_g
TYPE(local_rho_type), POINTER :: local_rho_set
TYPE(hartree_local_type), POINTER :: hartree_local
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(tddfpt_subgroup_env_type), INTENT(in) :: sub_env
LOGICAL, INTENT(IN) :: gapw
TYPE(pw_c1d_gs_type), INTENT(INOUT) :: work_v_gspace
TYPE(pw_r3d_rs_type), INTENT(INOUT) :: work_v_rspace
CHARACTER(LEN=*), PARAMETER :: routineN = 'tddfpt_apply_coulomb'
INTEGER :: handle, ispin, nspins
REAL(kind=dp) :: alpha, pair_energy
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_poisson_type), POINTER :: poisson_env
CALL timeset(routineN, handle)
nspins = SIZE(A_ia_rspace)
pw_env => sub_env%pw_env
CALL pw_env_get(pw_env, poisson_env=poisson_env)
IF (nspins > 1) THEN
alpha = 1.0_dp
ELSE
! spin-restricted case: alpha == 2 due to singlet state.
! In case of triplet states alpha == 0, so we should not call this subroutine at all.
alpha = 2.0_dp
END IF
IF (gapw) THEN
CPASSERT(ASSOCIATED(local_rho_set))
CALL pw_axpy(local_rho_set%rho0_mpole%rho0_s_gs, rho_ia_g)
END IF
CALL pw_poisson_solve(poisson_env, rho_ia_g, pair_energy, work_v_gspace)
CALL pw_transfer(work_v_gspace, work_v_rspace)
! (i a || j b) = ( i_alpha a_alpha + i_beta a_beta || j_alpha b_alpha + j_beta b_beta) =
! tr (Cj_alpha^T * [J_i{alpha}a{alpha}_munu + J_i{beta}a{beta}_munu] * Cb_alpha) +
! tr (Cj_beta^T * [J_i{alpha}a{alpha}_munu + J_i{beta}a{beta}_munu] * Cb_beta)
DO ispin = 1, nspins
CALL pw_axpy(work_v_rspace, A_ia_rspace(ispin), alpha)
END DO
IF (gapw) THEN
CALL Vh_1c_gg_integrals(qs_env, pair_energy, &
hartree_local%ecoul_1c, &
local_rho_set, &
sub_env%para_env, tddft=.TRUE., core_2nd=.TRUE.)
CALL pw_scale(work_v_rspace, work_v_rspace%pw_grid%dvol)
CALL integrate_vhg0_rspace(qs_env, work_v_rspace, sub_env%para_env, &
calculate_forces=.FALSE., &
local_rho_set=local_rho_set)
END IF
CALL timestop(handle)
END SUBROUTINE tddfpt_apply_coulomb
! **************************************************************************************************
!> \brief Driver routine for applying fxc (analyic vs. finite difference for testing
!> \param A_ia_rspace action of TDDFPT operator on trial vectors expressed in a plane wave
!> representation (modified on exit)
!> \param kernel_env kernel environment
!> \param rho_ia_struct response density for the given trial vector
!> \param is_rks_triplets indicates that the triplet excited states calculation using
!> spin-unpolarised molecular orbitals has been requested
!> \param pw_env plain wave environment
!> \param work_v_xc work real-space grid to store the gradient of the exchange-correlation
!> potential with respect to the response density (modified on exit)
!> \param work_v_xc_tau ...
! **************************************************************************************************
SUBROUTINE tddfpt_apply_xc(A_ia_rspace, kernel_env, rho_ia_struct, is_rks_triplets, &
pw_env, work_v_xc, work_v_xc_tau)
TYPE(pw_r3d_rs_type), DIMENSION(:), INTENT(INOUT) :: A_ia_rspace
TYPE(full_kernel_env_type), INTENT(IN) :: kernel_env
TYPE(qs_rho_type), POINTER :: rho_ia_struct
LOGICAL, INTENT(in) :: is_rks_triplets
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: work_v_xc, work_v_xc_tau
INTEGER :: ispin, nspins
nspins = SIZE(A_ia_rspace)
IF (kernel_env%deriv2_analytic) THEN
CALL tddfpt_apply_xc_analytic(kernel_env, rho_ia_struct, is_rks_triplets, nspins, &
pw_env, work_v_xc, work_v_xc_tau)
ELSE
CALL tddfpt_apply_xc_fd(kernel_env, rho_ia_struct, is_rks_triplets, nspins, &
pw_env, work_v_xc, work_v_xc_tau)
END IF
DO ispin = 1, nspins
! pw2 = pw2 + alpha * pw1
CALL pw_axpy(work_v_xc(ispin), A_ia_rspace(ispin), kernel_env%alpha)
END DO
END SUBROUTINE tddfpt_apply_xc
! **************************************************************************************************
!> \brief Routine for applying fxc potential
!> \param A_ia_rspace action of TDDFPT operator on trial vectors expressed in a plane wave
!> representation (modified on exit)
!> \param fxc_rspace ...
!> \param rho_ia_struct response density for the given trial vector
!> \param is_rks_triplets ...
! **************************************************************************************************
SUBROUTINE tddfpt_apply_xc_potential(A_ia_rspace, fxc_rspace, rho_ia_struct, is_rks_triplets)
TYPE(pw_r3d_rs_type), DIMENSION(:), INTENT(INOUT) :: A_ia_rspace
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: fxc_rspace
TYPE(qs_rho_type), POINTER :: rho_ia_struct
LOGICAL, INTENT(in) :: is_rks_triplets
INTEGER :: nspins
REAL(KIND=dp) :: alpha
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: rho1_r
nspins = SIZE(A_ia_rspace)
alpha = 1.0_dp
CALL qs_rho_get(rho_ia_struct, rho_r=rho1_r)
IF (nspins == 2) THEN
CALL pw_multiply(A_ia_rspace(1), fxc_rspace(1), rho1_r(1), alpha)
CALL pw_multiply(A_ia_rspace(1), fxc_rspace(2), rho1_r(2), alpha)
CALL pw_multiply(A_ia_rspace(2), fxc_rspace(3), rho1_r(2), alpha)
CALL pw_multiply(A_ia_rspace(2), fxc_rspace(2), rho1_r(1), alpha)
ELSE IF (is_rks_triplets) THEN
CALL pw_multiply(A_ia_rspace(1), fxc_rspace(1), rho1_r(1), alpha)
CALL pw_multiply(A_ia_rspace(1), fxc_rspace(2), rho1_r(1), -alpha)
ELSE
CALL pw_multiply(A_ia_rspace(1), fxc_rspace(1), rho1_r(1), alpha)
CALL pw_multiply(A_ia_rspace(1), fxc_rspace(2), rho1_r(1), alpha)
END IF
END SUBROUTINE tddfpt_apply_xc_potential
! **************************************************************************************************
!> \brief Update A_ia_munu by adding exchange-correlation term.
!> \param kernel_env kernel environment
!> \param rho_ia_struct response density for the given trial vector
!> \param is_rks_triplets indicates that the triplet excited states calculation using
!> spin-unpolarised molecular orbitals has been requested
!> \param nspins ...
!> \param pw_env plain wave environment
!> \param work_v_xc work real-space grid to store the gradient of the exchange-correlation
!> potential with respect to the response density (modified on exit)
!> \param work_v_xc_tau ...
!> \par History
!> * 05.2016 compute all kernel terms in one go [Sergey Chulkov]
!> * 03.2017 proceed excited states sequentially; minimise the number of conversions between
!> DBCSR and FM matrices [Sergey Chulkov]
!> * 06.2018 return the action expressed in the plane wave representation instead of the one
!> in the atomic basis set representation
!> \note Based on the subroutine kpp1_calc_k_p_p1() which was originally created by
!> Mohamed Fawzi on 10.2002.
! **************************************************************************************************
SUBROUTINE tddfpt_apply_xc_analytic(kernel_env, rho_ia_struct, is_rks_triplets, nspins, &
pw_env, work_v_xc, work_v_xc_tau)
TYPE(full_kernel_env_type), INTENT(in) :: kernel_env
TYPE(qs_rho_type), POINTER :: rho_ia_struct
LOGICAL, INTENT(in) :: is_rks_triplets
INTEGER, INTENT(in) :: nspins
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: work_v_xc, work_v_xc_tau
CHARACTER(LEN=*), PARAMETER :: routineN = 'tddfpt_apply_xc_analytic'
INTEGER :: handle, ispin
TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER :: rho_ia_g, rho_ia_g2
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: rho_ia_r, rho_ia_r2, tau_ia_r, tau_ia_r2
CALL timeset(routineN, handle)
CALL qs_rho_get(rho_ia_struct, rho_g=rho_ia_g, rho_r=rho_ia_r, tau_r=tau_ia_r)
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
IF (debug_this_module) THEN
CPASSERT(SIZE(rho_ia_g) == nspins)
CPASSERT(SIZE(rho_ia_r) == nspins)
CPASSERT((.NOT. ASSOCIATED(tau_ia_r)) .OR. SIZE(tau_ia_r) == nspins)
CPASSERT((.NOT. is_rks_triplets) .OR. nspins == 1)
END IF
NULLIFY (tau_ia_r2)
IF (is_rks_triplets) THEN
ALLOCATE (rho_ia_r2(2))
ALLOCATE (rho_ia_g2(2))
rho_ia_r2(1) = rho_ia_r(1)
rho_ia_r2(2) = rho_ia_r(1)
rho_ia_g2(1) = rho_ia_g(1)
rho_ia_g2(2) = rho_ia_g(1)
IF (ASSOCIATED(tau_ia_r)) THEN
ALLOCATE (tau_ia_r2(2))
tau_ia_r2(1) = tau_ia_r(1)
tau_ia_r2(2) = tau_ia_r(1)
END IF
ELSE
rho_ia_r2 => rho_ia_r
rho_ia_g2 => rho_ia_g
tau_ia_r2 => tau_ia_r
END IF
DO ispin = 1, nspins
CALL pw_zero(work_v_xc(ispin))
IF (ASSOCIATED(work_v_xc_tau)) CALL pw_zero(work_v_xc_tau(ispin))
END DO
CALL xc_rho_set_update(rho_set=kernel_env%xc_rho1_set, rho_r=rho_ia_r2, rho_g=rho_ia_g2, tau=tau_ia_r2, &
needs=kernel_env%xc_rho1_cflags, xc_deriv_method_id=kernel_env%deriv_method_id, &
xc_rho_smooth_id=kernel_env%rho_smooth_id, pw_pool=auxbas_pw_pool)
CALL xc_calc_2nd_deriv_analytical(v_xc=work_v_xc, v_xc_tau=work_v_xc_tau, deriv_set=kernel_env%xc_deriv_set, &
rho_set=kernel_env%xc_rho_set, &
rho1_set=kernel_env%xc_rho1_set, pw_pool=auxbas_pw_pool, &
xc_section=kernel_env%xc_section, gapw=.FALSE., tddfpt_fac=kernel_env%beta)
IF (is_rks_triplets) THEN
DEALLOCATE (rho_ia_r2)
DEALLOCATE (rho_ia_g2)
IF (ASSOCIATED(tau_ia_r2)) DEALLOCATE (tau_ia_r2)
END IF
CALL timestop(handle)
END SUBROUTINE tddfpt_apply_xc_analytic
! **************************************************************************************************
!> \brief Update A_ia_munu by adding exchange-correlation term using finite difference methods.
!> \param kernel_env kernel environment
!> \param rho_ia_struct response density for the given trial vector
!> \param is_rks_triplets indicates that the triplet excited states calculation using
!> spin-unpolarised molecular orbitals has been requested
!> \param nspins ...
!> \param pw_env plain wave environment
!> \param work_v_xc work real-space grid to store the gradient of the exchange-correlation
!> potential with respect to the response density (modified on exit)
!> \param work_v_xc_tau ...
! **************************************************************************************************
SUBROUTINE tddfpt_apply_xc_fd(kernel_env, rho_ia_struct, is_rks_triplets, nspins, &
pw_env, work_v_xc, work_v_xc_tau)
TYPE(full_kernel_env_type), INTENT(in) :: kernel_env
TYPE(qs_rho_type), POINTER :: rho_ia_struct
LOGICAL, INTENT(in) :: is_rks_triplets
INTEGER, INTENT(in) :: nspins
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: work_v_xc, work_v_xc_tau
CHARACTER(LEN=*), PARAMETER :: routineN = 'tddfpt_apply_xc_fd'
INTEGER :: handle, ispin
LOGICAL :: lsd, singlet, triplet
TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER :: rho1_g
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: rho1_r, tau1_r
TYPE(xc_rho_set_type), POINTER :: rho_set
CALL timeset(routineN, handle)
CALL qs_rho_get(rho_ia_struct, rho_r=rho1_r, rho_g=rho1_g, tau_r=tau1_r)
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
DO ispin = 1, nspins
CALL pw_zero(work_v_xc(ispin))
END DO
rho_set => kernel_env%xc_rho_set
singlet = .FALSE.
triplet = .FALSE.
lsd = .FALSE.
IF (nspins == 1 .AND. .NOT. is_rks_triplets) THEN
singlet = .TRUE.
ELSE IF (nspins == 1 .AND. is_rks_triplets) THEN
triplet = .TRUE.
ELSE IF (nspins == 2) THEN
lsd = .TRUE.
ELSE
CPABORT("illegal options")
END IF
IF (ASSOCIATED(tau1_r)) THEN
DO ispin = 1, nspins
CALL pw_zero(work_v_xc_tau(ispin))
END DO
END IF
CALL xc_calc_2nd_deriv_numerical(work_v_xc, work_v_xc_tau, rho_set, rho1_r, rho1_g, tau1_r, &
auxbas_pw_pool, kernel_env%xc_section, &
is_rks_triplets)
CALL timestop(handle)
END SUBROUTINE tddfpt_apply_xc_fd
! **************************************************************************************************
!> \brief Update action of TDDFPT operator on trial vectors by adding exact-exchange term.
!> \param Aop_evects action of TDDFPT operator on trial vectors (modified on exit)
!> \param evects trial vectors
!> \param gs_mos molecular orbitals optimised for the ground state (only occupied
!> molecular orbitals [component %mos_occ] are needed)
!> \param do_admm perform auxiliary density matrix method calculations
!> \param qs_env Quickstep environment
!> \param work_rho_ia_ao_symm ...
!> \param work_hmat_symm ...
!> \param work_rho_ia_ao_asymm ...
!> \param work_hmat_asymm ...
!> \param wfm_rho_orb ...
!> \par History
!> * 05.2016 compute all exact-exchange terms in one go [Sergey Chulkov]
!> * 03.2017 code related to ADMM correction is now moved to tddfpt_apply_admm_correction()
!> in order to compute this correction within parallel groups [Sergey Chulkov]
!> \note Based on the subroutine kpp1_calc_k_p_p1() which was originally created by
!> Mohamed Fawzi on 10.2002.
! **************************************************************************************************
SUBROUTINE tddfpt_apply_hfx(Aop_evects, evects, gs_mos, do_admm, qs_env, &
work_rho_ia_ao_symm, work_hmat_symm, work_rho_ia_ao_asymm, &
work_hmat_asymm, wfm_rho_orb)
TYPE(cp_fm_type), DIMENSION(:, :), INTENT(in) :: Aop_evects, evects
TYPE(tddfpt_ground_state_mos), DIMENSION(:), &
INTENT(in) :: gs_mos
LOGICAL, INTENT(in) :: do_admm
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(dbcsr_p_type), DIMENSION(:), INTENT(INOUT) :: work_rho_ia_ao_symm
TYPE(dbcsr_p_type), DIMENSION(:), INTENT(INOUT), &
TARGET :: work_hmat_symm
TYPE(dbcsr_p_type), DIMENSION(:), INTENT(INOUT) :: work_rho_ia_ao_asymm
TYPE(dbcsr_p_type), DIMENSION(:), INTENT(INOUT), &
TARGET :: work_hmat_asymm
TYPE(cp_fm_type), INTENT(IN) :: wfm_rho_orb
CHARACTER(LEN=*), PARAMETER :: routineN = 'tddfpt_apply_hfx'
INTEGER :: handle, ispin, ivect, nao, nao_aux, &
nspins, nvects
INTEGER, DIMENSION(maxspins) :: nactive
LOGICAL :: do_hfx
REAL(kind=dp) :: alpha
TYPE(admm_type), POINTER :: admm_env
TYPE(section_vals_type), POINTER :: hfx_section, input
CALL timeset(routineN, handle)
! Check for hfx section
CALL get_qs_env(qs_env, input=input)
hfx_section => section_vals_get_subs_vals(input, "DFT%XC%HF")
CALL section_vals_get(hfx_section, explicit=do_hfx)
IF (do_hfx) THEN
nspins = SIZE(evects, 1)
nvects = SIZE(evects, 2)
IF (nspins > 1) THEN
alpha = 1.0_dp
ELSE
alpha = 2.0_dp
END IF
CALL cp_fm_get_info(gs_mos(1)%mos_occ, nrow_global=nao)
DO ispin = 1, nspins
CALL cp_fm_get_info(evects(ispin, 1), ncol_global=nactive(ispin))
END DO
IF (do_admm) THEN
CALL get_qs_env(qs_env, admm_env=admm_env)
CALL cp_fm_get_info(admm_env%A, nrow_global=nao_aux)
END IF
!Note: the symmetrized transition density matrix is P = 0.5*(C*evect^T + evect*C^T)
! in the end, we only want evect*C^T for consistency with the MO formulation of TDDFT
! therefore, we go in 2 steps: with the symmetric 0.5*(C*evect^T + evect*C^T) and
! the antisymemtric 0.5*(C*evect^T - evect*C^T)
! some stuff from qs_ks_build_kohn_sham_matrix
! TO DO: add SIC support
DO ivect = 1, nvects
DO ispin = 1, nspins
!The symmetric density matrix
CALL parallel_gemm('N', 'T', nao, nao, nactive(ispin), 0.5_dp, evects(ispin, ivect), &
gs_mos(ispin)%mos_occ, 0.0_dp, wfm_rho_orb)
CALL parallel_gemm('N', 'T', nao, nao, nactive(ispin), 0.5_dp, gs_mos(ispin)%mos_occ, &
evects(ispin, ivect), 1.0_dp, wfm_rho_orb)
CALL dbcsr_set(work_hmat_symm(ispin)%matrix, 0.0_dp)
IF (do_admm) THEN
CALL parallel_gemm('N', 'N', nao_aux, nao, nao, 1.0_dp, admm_env%A, &
wfm_rho_orb, 0.0_dp, admm_env%work_aux_orb)
CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, 1.0_dp, admm_env%work_aux_orb, admm_env%A, &
0.0_dp, admm_env%work_aux_aux)
CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, work_rho_ia_ao_symm(ispin)%matrix, keep_sparsity=.TRUE.)
ELSE
CALL copy_fm_to_dbcsr(wfm_rho_orb, work_rho_ia_ao_symm(ispin)%matrix, keep_sparsity=.TRUE.)
END IF
END DO
CALL tddft_hfx_matrix(work_hmat_symm, work_rho_ia_ao_symm, qs_env)
IF (do_admm) THEN
DO ispin = 1, nspins
CALL cp_dbcsr_sm_fm_multiply(work_hmat_symm(ispin)%matrix, admm_env%A, admm_env%work_aux_orb, &
ncol=nao, alpha=1.0_dp, beta=0.0_dp)
CALL parallel_gemm('T', 'N', nao, nao, nao_aux, 1.0_dp, admm_env%A, &
admm_env%work_aux_orb, 0.0_dp, wfm_rho_orb)
CALL parallel_gemm('N', 'N', nao, nactive(ispin), nao, alpha, wfm_rho_orb, &
gs_mos(ispin)%mos_occ, 1.0_dp, Aop_evects(ispin, ivect))
END DO
ELSE
DO ispin = 1, nspins
CALL cp_dbcsr_sm_fm_multiply(work_hmat_symm(ispin)%matrix, gs_mos(ispin)%mos_occ, &
Aop_evects(ispin, ivect), ncol=nactive(ispin), &
alpha=alpha, beta=1.0_dp)
END DO
END IF
!The anti-symmetric density matrix
DO ispin = 1, nspins
!The symmetric density matrix
CALL parallel_gemm('N', 'T', nao, nao, nactive(ispin), 0.5_dp, evects(ispin, ivect), &
gs_mos(ispin)%mos_occ, 0.0_dp, wfm_rho_orb)
CALL parallel_gemm('N', 'T', nao, nao, nactive(ispin), -0.5_dp, gs_mos(ispin)%mos_occ, &
evects(ispin, ivect), 1.0_dp, wfm_rho_orb)
CALL dbcsr_set(work_hmat_asymm(ispin)%matrix, 0.0_dp)
IF (do_admm) THEN
CALL parallel_gemm('N', 'N', nao_aux, nao, nao, 1.0_dp, admm_env%A, &
wfm_rho_orb, 0.0_dp, admm_env%work_aux_orb)
CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, 1.0_dp, admm_env%work_aux_orb, admm_env%A, &
0.0_dp, admm_env%work_aux_aux)
CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, work_rho_ia_ao_asymm(ispin)%matrix, keep_sparsity=.TRUE.)
ELSE
CALL copy_fm_to_dbcsr(wfm_rho_orb, work_rho_ia_ao_asymm(ispin)%matrix, keep_sparsity=.TRUE.)
END IF
END DO
CALL tddft_hfx_matrix(work_hmat_asymm, work_rho_ia_ao_asymm, qs_env)
IF (do_admm) THEN
DO ispin = 1, nspins
CALL cp_dbcsr_sm_fm_multiply(work_hmat_asymm(ispin)%matrix, admm_env%A, admm_env%work_aux_orb, &
ncol=nao, alpha=1.0_dp, beta=0.0_dp)
CALL parallel_gemm('T', 'N', nao, nao, nao_aux, 1.0_dp, admm_env%A, &
admm_env%work_aux_orb, 0.0_dp, wfm_rho_orb)
CALL parallel_gemm('N', 'N', nao, nactive(ispin), nao, alpha, wfm_rho_orb, &
gs_mos(ispin)%mos_occ, 1.0_dp, Aop_evects(ispin, ivect))
END DO
ELSE
DO ispin = 1, nspins
CALL cp_dbcsr_sm_fm_multiply(work_hmat_asymm(ispin)%matrix, gs_mos(ispin)%mos_occ, &
Aop_evects(ispin, ivect), ncol=nactive(ispin), &
alpha=alpha, beta=1.0_dp)
END DO
END IF
END DO
END IF
CALL timestop(handle)
END SUBROUTINE tddfpt_apply_hfx
! **************************************************************************************************
!> \brief Update action of TDDFPT operator on trial vectors by adding exact-exchange term.
!> \param Aop_evects action of TDDFPT operator on trial vectors (modified on exit)
!> \param evects trial vectors
!> \param gs_mos molecular orbitals optimised for the ground state (only occupied
!> molecular orbitals [component %mos_occ] are needed)
!> \param qs_env Quickstep environment
!> \param admm_env ...
!> \param hfx_section ...
!> \param x_data ...
!> \param symmetry ...
!> \param recalc_integrals ...
!> \param work_rho_ia_ao ...
!> \param work_hmat ...
!> \param wfm_rho_orb ...
! **************************************************************************************************
SUBROUTINE tddfpt_apply_hfxsr_kernel(Aop_evects, evects, gs_mos, qs_env, admm_env, &
hfx_section, x_data, symmetry, recalc_integrals, &
work_rho_ia_ao, work_hmat, wfm_rho_orb)
TYPE(cp_fm_type), DIMENSION(:, :), INTENT(in) :: Aop_evects, evects
TYPE(tddfpt_ground_state_mos), DIMENSION(:), &
INTENT(in) :: gs_mos
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(admm_type), POINTER :: admm_env
TYPE(section_vals_type), POINTER :: hfx_section
TYPE(hfx_type), DIMENSION(:, :), POINTER :: x_data
INTEGER, INTENT(IN) :: symmetry
LOGICAL, INTENT(IN) :: recalc_integrals
TYPE(dbcsr_p_type), DIMENSION(:), INTENT(INOUT) :: work_rho_ia_ao
TYPE(dbcsr_p_type), DIMENSION(:), INTENT(INOUT), &
TARGET :: work_hmat
TYPE(cp_fm_type), INTENT(IN) :: wfm_rho_orb
CHARACTER(LEN=*), PARAMETER :: routineN = 'tddfpt_apply_hfxsr_kernel'
INTEGER :: handle, ispin, ivect, nao, nao_aux, &
nspins, nvects
INTEGER, DIMENSION(maxspins) :: nactive
LOGICAL :: reint
REAL(kind=dp) :: alpha
CALL timeset(routineN, handle)
nspins = SIZE(evects, 1)
nvects = SIZE(evects, 2)
alpha = 2.0_dp
IF (nspins > 1) alpha = 1.0_dp
CALL cp_fm_get_info(gs_mos(1)%mos_occ, nrow_global=nao)
CALL cp_fm_get_info(admm_env%A, nrow_global=nao_aux)
DO ispin = 1, nspins
CALL cp_fm_get_info(evects(ispin, 1), ncol_global=nactive(ispin))
END DO
reint = recalc_integrals
DO ivect = 1, nvects
DO ispin = 1, nspins
CALL parallel_gemm('N', 'T', nao, nao, nactive(ispin), 0.5_dp, evects(ispin, ivect), &
gs_mos(ispin)%mos_occ, 0.0_dp, wfm_rho_orb)
CALL parallel_gemm('N', 'T', nao, nao, nactive(ispin), 0.5_dp*symmetry, gs_mos(ispin)%mos_occ, &
evects(ispin, ivect), 1.0_dp, wfm_rho_orb)
CALL dbcsr_set(work_hmat(ispin)%matrix, 0.0_dp)
CALL parallel_gemm('N', 'N', nao_aux, nao, nao, 1.0_dp, admm_env%A, &
wfm_rho_orb, 0.0_dp, admm_env%work_aux_orb)
CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, 1.0_dp, admm_env%work_aux_orb, admm_env%A, &
0.0_dp, admm_env%work_aux_aux)
CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, work_rho_ia_ao(ispin)%matrix, keep_sparsity=.TRUE.)
END DO
CALL tddft_hfx_matrix(work_hmat, work_rho_ia_ao, qs_env, .FALSE., reint, hfx_section, x_data)
reint = .FALSE.
DO ispin = 1, nspins
CALL cp_dbcsr_sm_fm_multiply(work_hmat(ispin)%matrix, admm_env%A, admm_env%work_aux_orb, &
ncol=nao, alpha=1.0_dp, beta=0.0_dp)
CALL parallel_gemm('T', 'N', nao, nao, nao_aux, 1.0_dp, admm_env%A, &
admm_env%work_aux_orb, 0.0_dp, wfm_rho_orb)
CALL parallel_gemm('N', 'N', nao, nactive(ispin), nao, alpha, wfm_rho_orb, &
gs_mos(ispin)%mos_occ, 1.0_dp, Aop_evects(ispin, ivect))
END DO
END DO
CALL timestop(handle)
END SUBROUTINE tddfpt_apply_hfxsr_kernel
! **************************************************************************************************
!> \brief ...Calculate the HFXLR kernel contribution by contracting the Lowdin MO coefficients --
!> transition charges with the exchange-type integrals using the sTDA approximation
!> \param qs_env ...
!> \param sub_env ...
!> \param rcut ...
!> \param hfx_scale ...
!> \param work ...
!> \param X ...
!> \param res ... vector AX with A being the sTDA matrix and X the Davidson trial vector of the
!> eigenvalue problem A*X = omega*X
! **************************************************************************************************
SUBROUTINE tddfpt_apply_hfxlr_kernel(qs_env, sub_env, rcut, hfx_scale, work, X, res)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(tddfpt_subgroup_env_type) :: sub_env
REAL(KIND=dp), INTENT(IN) :: rcut, hfx_scale
TYPE(tddfpt_work_matrices) :: work
TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: X, res
CHARACTER(len=*), PARAMETER :: routineN = 'tddfpt_apply_hfxlr_kernel'
INTEGER :: blk, handle, iatom, ispin, jatom, natom, &
nsgf, nspins
INTEGER, DIMENSION(2) :: nactive
REAL(KIND=dp) :: dr, eps_filter, fcut, gabr
REAL(KIND=dp), DIMENSION(3) :: rij
REAL(KIND=dp), DIMENSION(:, :), POINTER :: pblock
TYPE(cell_type), POINTER :: cell
TYPE(cp_fm_struct_type), POINTER :: fmstruct
TYPE(cp_fm_type) :: cvec
TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: xtransformed
TYPE(cp_fm_type), POINTER :: ct
TYPE(dbcsr_iterator_type) :: iter
TYPE(dbcsr_type) :: pdens
TYPE(dbcsr_type), POINTER :: tempmat
TYPE(mp_para_env_type), POINTER :: para_env
TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
CALL timeset(routineN, handle)
! parameters
eps_filter = 1.E-08_dp
nspins = SIZE(X)
DO ispin = 1, nspins
CALL cp_fm_get_info(X(ispin), ncol_global=nactive(ispin))
END DO
para_env => sub_env%para_env
CALL get_qs_env(qs_env, natom=natom, cell=cell, particle_set=particle_set)
! calculate Loewdin transformed Davidson trial vector tilde(X)=S^1/2*X
! and tilde(tilde(X))=S^1/2_A*tilde(X)_A
ALLOCATE (xtransformed(nspins))
DO ispin = 1, nspins
NULLIFY (fmstruct)
ct => work%ctransformed(ispin)
CALL cp_fm_get_info(ct, matrix_struct=fmstruct)
CALL cp_fm_create(matrix=xtransformed(ispin), matrix_struct=fmstruct, name="XTRANSFORMED")
END DO
CALL get_lowdin_x(work%shalf, X, xtransformed)
DO ispin = 1, nspins
ct => work%ctransformed(ispin)
CALL cp_fm_get_info(ct, matrix_struct=fmstruct, nrow_global=nsgf)
CALL cp_fm_create(cvec, fmstruct)
!
tempmat => work%shalf
CALL dbcsr_create(pdens, template=tempmat, matrix_type=dbcsr_type_no_symmetry)
! P(nu,mu) = SUM_j XT(nu,j)*CT(mu,j)
ct => work%ctransformed(ispin)
CALL dbcsr_set(pdens, 0.0_dp)
CALL cp_dbcsr_plus_fm_fm_t(pdens, xtransformed(ispin), ct, nactive(ispin), &
1.0_dp, keep_sparsity=.FALSE.)
CALL dbcsr_filter(pdens, eps_filter)
! Apply PP*gab -> PP; gab = gamma_coulomb
! P(nu,mu) = P(nu,mu)*g(a of nu,b of mu)
CALL dbcsr_iterator_start(iter, pdens)
DO WHILE (dbcsr_iterator_blocks_left(iter))
CALL dbcsr_iterator_next_block(iter, iatom, jatom, pblock, blk)
rij = particle_set(iatom)%r - particle_set(jatom)%r
rij = pbc(rij, cell)
dr = SQRT(SUM(rij(:)**2))
gabr = 1._dp/rcut
IF (dr < 1.e-6) THEN
gabr = 2._dp*gabr/SQRT(3.1415926_dp)
ELSE
gabr = ERF(gabr*dr)/dr
fcut = EXP(dr - 4._dp*rcut)
fcut = fcut/(fcut + 1._dp)
END IF
pblock = hfx_scale*gabr*pblock
END DO
CALL dbcsr_iterator_stop(iter)
! CV(mu,i) = P(nu,mu)*CT(mu,i)
CALL cp_dbcsr_sm_fm_multiply(pdens, ct, cvec, nactive(ispin), 1.0_dp, 0.0_dp)
! rho(nu,i) = rho(nu,i) + ShalfP(nu,mu)*CV(mu,i)
CALL cp_dbcsr_sm_fm_multiply(work%shalf, cvec, res(ispin), nactive(ispin), &
-1.0_dp, 1.0_dp)
!
CALL dbcsr_release(pdens)
!
CALL cp_fm_release(cvec)
END DO
CALL cp_fm_release(xtransformed)
CALL timestop(handle)
END SUBROUTINE tddfpt_apply_hfxlr_kernel
! **************************************************************************************************
END MODULE qs_tddfpt2_operators