-
Notifications
You must be signed in to change notification settings - Fork 1
/
qs_tddfpt2_densities.F
229 lines (196 loc) · 12.9 KB
/
qs_tddfpt2_densities.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
MODULE qs_tddfpt2_densities
USE admm_types, ONLY: admm_type,&
get_admm_env
USE cp_control_types, ONLY: dft_control_type
USE cp_dbcsr_api, ONLY: dbcsr_p_type,&
dbcsr_scale
USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
copy_fm_to_dbcsr
USE cp_fm_types, ONLY: cp_fm_get_info,&
cp_fm_type
USE kinds, ONLY: default_string_length,&
dp
USE parallel_gemm_api, ONLY: parallel_gemm
USE pw_env_types, ONLY: pw_env_get
USE pw_pool_types, ONLY: pw_pool_type
USE pw_types, ONLY: pw_c1d_gs_type,&
pw_r3d_rs_type
USE qs_collocate_density, ONLY: calculate_rho_elec
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_gapw_densities, ONLY: prepare_gapw_den
USE qs_ks_types, ONLY: qs_ks_env_type
USE qs_local_rho_types, ONLY: local_rho_type
USE qs_neighbor_list_types, ONLY: neighbor_list_set_p_type
USE qs_rho_atom_methods, ONLY: calculate_rho_atom_coeff
USE qs_rho_methods, ONLY: qs_rho_copy,&
qs_rho_update_rho
USE qs_rho_types, ONLY: qs_rho_get,&
qs_rho_type
USE qs_tddfpt2_subgroups, ONLY: tddfpt_subgroup_env_type
USE task_list_types, ONLY: task_list_type
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_tddfpt2_densities'
INTEGER, PARAMETER, PRIVATE :: maxspins = 2
PUBLIC :: tddfpt_construct_ground_state_orb_density, tddfpt_construct_aux_fit_density
! **************************************************************************************************
CONTAINS
! **************************************************************************************************
!> \brief Compute the ground-state charge density expressed in primary basis set.
!> \param rho_orb_struct ground-state density in primary basis set
!> \param rho_xc_struct ground-state density in primary basis set for GAPW_XC
!> \param is_rks_triplets indicates that the triplet excited states calculation using
!> spin-unpolarised molecular orbitals has been requested
!> \param qs_env Quickstep environment
!> \param sub_env parallel (sub)group environment
!> \param wfm_rho_orb work dense matrix with shape [nao x nao] distributed among
!> processors of the given parallel group (modified on exit)
!> \par History
!> * 06.2018 created by splitting the subroutine tddfpt_apply_admm_correction() in two
!> subroutines tddfpt_construct_ground_state_orb_density() and
!> tddfpt_construct_aux_fit_density [Sergey Chulkov]
! **************************************************************************************************
SUBROUTINE tddfpt_construct_ground_state_orb_density(rho_orb_struct, rho_xc_struct, is_rks_triplets, &
qs_env, sub_env, wfm_rho_orb)
TYPE(qs_rho_type), POINTER :: rho_orb_struct, rho_xc_struct
LOGICAL, INTENT(in) :: is_rks_triplets
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(tddfpt_subgroup_env_type), INTENT(in) :: sub_env
TYPE(cp_fm_type), INTENT(IN) :: wfm_rho_orb
CHARACTER(LEN=*), PARAMETER :: routineN = 'tddfpt_construct_ground_state_orb_density'
INTEGER :: handle, ispin, nao, nspins
INTEGER, DIMENSION(maxspins) :: nmo_occ
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: rho_ij_ao
TYPE(dft_control_type), POINTER :: dft_control
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
CALL timeset(routineN, handle)
nspins = SIZE(sub_env%mos_occ)
DO ispin = 1, nspins
CALL cp_fm_get_info(sub_env%mos_occ(ispin), nrow_global=nao, ncol_global=nmo_occ(ispin))
END DO
CALL qs_rho_get(rho_orb_struct, rho_ao=rho_ij_ao)
DO ispin = 1, nspins
CALL parallel_gemm('N', 'T', nao, nao, nmo_occ(ispin), 1.0_dp, &
sub_env%mos_occ(ispin), sub_env%mos_occ(ispin), &
0.0_dp, wfm_rho_orb)
CALL copy_fm_to_dbcsr(wfm_rho_orb, rho_ij_ao(ispin)%matrix, keep_sparsity=.TRUE.)
END DO
! take into account that all MOs are doubly occupied in spin-restricted case
IF (nspins == 1 .AND. (.NOT. is_rks_triplets)) &
CALL dbcsr_scale(rho_ij_ao(1)%matrix, 2.0_dp)
CALL get_qs_env(qs_env, dft_control=dft_control)
IF (dft_control%qs_control%gapw) THEN
CALL qs_rho_update_rho(rho_orb_struct, qs_env, &
local_rho_set=sub_env%local_rho_set, &
pw_env_external=sub_env%pw_env, &
task_list_external=sub_env%task_list_orb_soft, &
para_env_external=sub_env%para_env)
CALL prepare_gapw_den(qs_env, local_rho_set=sub_env%local_rho_set)
ELSEIF (dft_control%qs_control%gapw_xc) THEN
CALL qs_rho_update_rho(rho_orb_struct, qs_env, &
rho_xc_external=rho_xc_struct, &
local_rho_set=sub_env%local_rho_set, &
pw_env_external=sub_env%pw_env, &
task_list_external=sub_env%task_list_orb, &
task_list_external_soft=sub_env%task_list_orb_soft, &
para_env_external=sub_env%para_env)
CALL pw_env_get(sub_env%pw_env, auxbas_pw_pool=auxbas_pw_pool)
CALL qs_rho_copy(rho_xc_struct, rho_orb_struct, auxbas_pw_pool, nspins)
CALL prepare_gapw_den(qs_env, local_rho_set=sub_env%local_rho_set, do_rho0=.FALSE.)
ELSE
CALL qs_rho_update_rho(rho_orb_struct, qs_env, &
pw_env_external=sub_env%pw_env, &
task_list_external=sub_env%task_list_orb, &
para_env_external=sub_env%para_env)
END IF
CALL timestop(handle)
END SUBROUTINE tddfpt_construct_ground_state_orb_density
! **************************************************************************************************
!> \brief Project a charge density expressed in primary basis set into the auxiliary basis set.
!> \param rho_orb_struct response density in primary basis set
!> \param rho_aux_fit_struct response density in auxiliary basis set (modified on exit)
!> \param local_rho_set GAPW density of auxiliary basis set density
!> \param qs_env Quickstep environment
!> \param sub_env parallel (sub)group environment
!> \param wfm_rho_orb work dense matrix with shape [nao x nao] distributed among
!> processors of the given parallel group (modified on exit)
!> \param wfm_rho_aux_fit work dense matrix with shape [nao_aux x nao_aux] distributed among
!> processors of the given parallel group (modified on exit)
!> \param wfm_aux_orb work dense matrix with shape [nao_aux x nao] distributed among
!> processors of the given parallel group (modified on exit)
!> \par History
!> * 03.2017 the subroutine tddfpt_apply_admm_correction() was originally created by splitting
!> the subroutine tddfpt_apply_hfx() in two parts [Sergey Chulkov]
!> * 06.2018 created by splitting the subroutine tddfpt_apply_admm_correction() in two subroutines
!> tddfpt_construct_ground_state_orb_density() and tddfpt_construct_aux_fit_density()
!> in order to avoid code duplication [Sergey Chulkov]
! **************************************************************************************************
SUBROUTINE tddfpt_construct_aux_fit_density(rho_orb_struct, rho_aux_fit_struct, local_rho_set, &
qs_env, sub_env, &
wfm_rho_orb, wfm_rho_aux_fit, wfm_aux_orb)
TYPE(qs_rho_type), POINTER :: rho_orb_struct, rho_aux_fit_struct
TYPE(local_rho_type), POINTER :: local_rho_set
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(tddfpt_subgroup_env_type), INTENT(in) :: sub_env
TYPE(cp_fm_type), INTENT(IN) :: wfm_rho_orb, wfm_rho_aux_fit, wfm_aux_orb
CHARACTER(LEN=*), PARAMETER :: routineN = 'tddfpt_construct_aux_fit_density'
CHARACTER(LEN=default_string_length) :: basis_type
INTEGER :: handle, ispin, nao, nao_aux, nspins
REAL(kind=dp), DIMENSION(:), POINTER :: tot_rho_aux_fit_r
TYPE(admm_type), POINTER :: admm_env
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: rho_ao_aux_fit, rho_ao_orb
TYPE(neighbor_list_set_p_type), DIMENSION(:), &
POINTER :: sab_aux_fit
TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER :: rho_aux_fit_g
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: rho_aux_fit_r
TYPE(qs_ks_env_type), POINTER :: ks_env
TYPE(task_list_type), POINTER :: task_list
CALL timeset(routineN, handle)
CPASSERT(ASSOCIATED(sub_env%admm_A))
CALL get_qs_env(qs_env, ks_env=ks_env, admm_env=admm_env)
CALL qs_rho_get(rho_orb_struct, rho_ao=rho_ao_orb)
CALL qs_rho_get(rho_aux_fit_struct, rho_ao=rho_ao_aux_fit, rho_g=rho_aux_fit_g, &
rho_r=rho_aux_fit_r, tot_rho_r=tot_rho_aux_fit_r)
nspins = SIZE(rho_ao_orb)
IF (admm_env%do_gapw) THEN
basis_type = "AUX_FIT_SOFT"
task_list => sub_env%task_list_aux_fit_soft
ELSE
basis_type = "AUX_FIT"
task_list => sub_env%task_list_aux_fit
END IF
CALL cp_fm_get_info(sub_env%admm_A, nrow_global=nao_aux, ncol_global=nao)
DO ispin = 1, nspins
! TO DO: consider sub_env%admm_A to be a DBCSR matrix
CALL copy_dbcsr_to_fm(rho_ao_orb(ispin)%matrix, wfm_rho_orb)
CALL parallel_gemm('N', 'N', nao_aux, nao, nao, 1.0_dp, sub_env%admm_A, &
wfm_rho_orb, 0.0_dp, wfm_aux_orb)
CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, 1.0_dp, sub_env%admm_A, wfm_aux_orb, &
0.0_dp, wfm_rho_aux_fit)
CALL copy_fm_to_dbcsr(wfm_rho_aux_fit, rho_ao_aux_fit(ispin)%matrix, keep_sparsity=.TRUE.)
CALL calculate_rho_elec(matrix_p=rho_ao_aux_fit(ispin)%matrix, &
rho=rho_aux_fit_r(ispin), rho_gspace=rho_aux_fit_g(ispin), &
total_rho=tot_rho_aux_fit_r(ispin), ks_env=ks_env, &
soft_valid=.FALSE., basis_type=basis_type, &
pw_env_external=sub_env%pw_env, task_list_external=task_list)
END DO
IF (admm_env%do_gapw) THEN
CALL get_admm_env(qs_env%admm_env, sab_aux_fit=sab_aux_fit)
CALL calculate_rho_atom_coeff(qs_env, rho_ao_aux_fit, &
rho_atom_set=local_rho_set%rho_atom_set, &
qs_kind_set=admm_env%admm_gapw_env%admm_kind_set, &
oce=admm_env%admm_gapw_env%oce, sab=sab_aux_fit, para_env=sub_env%para_env)
CALL prepare_gapw_den(qs_env, local_rho_set=local_rho_set, &
do_rho0=.FALSE., kind_set_external=admm_env%admm_gapw_env%admm_kind_set)
END IF
CALL timestop(handle)
END SUBROUTINE tddfpt_construct_aux_fit_density
END MODULE qs_tddfpt2_densities