-
Notifications
You must be signed in to change notification settings - Fork 1
/
qs_scf_post_se.F
721 lines (651 loc) · 35.7 KB
/
qs_scf_post_se.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Does all kind of post scf calculations for semi-empirical
!> \par History
!> Started printing preliminary stuff for MO_CUBES and MO requires some
!> more work to complete all other functionalities
!> - Revise MO information printout (10.05.2021, MK)
!> \author Teodoro Laino (07.2008)
! **************************************************************************************************
MODULE qs_scf_post_se
USE ai_moments, ONLY: moment
USE atomic_kind_types, ONLY: atomic_kind_type,&
get_atomic_kind
USE basis_set_types, ONLY: gto_basis_set_type
USE cell_types, ONLY: cell_type,&
pbc
USE cp_control_types, ONLY: dft_control_type
USE cp_dbcsr_api, ONLY: dbcsr_get_block_p,&
dbcsr_p_type
USE cp_dbcsr_output, ONLY: cp_dbcsr_write_sparse_matrix
USE cp_log_handling, ONLY: cp_get_default_logger,&
cp_logger_get_default_io_unit,&
cp_logger_type
USE cp_output_handling, ONLY: cp_p_file,&
cp_print_key_finished_output,&
cp_print_key_should_output,&
cp_print_key_unit_nr
USE cp_result_methods, ONLY: cp_results_erase,&
put_results
USE cp_result_types, ONLY: cp_result_type
USE eeq_method, ONLY: eeq_print
USE input_section_types, ONLY: section_get_ival,&
section_vals_get,&
section_vals_get_subs_vals,&
section_vals_type,&
section_vals_val_get
USE kinds, ONLY: default_string_length,&
dp
USE mathconstants, ONLY: twopi
USE message_passing, ONLY: mp_para_env_type
USE moments_utils, ONLY: get_reference_point
USE orbital_pointers, ONLY: coset,&
ncoset
USE particle_list_types, ONLY: particle_list_type
USE particle_types, ONLY: particle_type
USE physcon, ONLY: debye
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_kind_types, ONLY: get_qs_kind,&
qs_kind_type
USE qs_ks_methods, ONLY: qs_ks_update_qs_env
USE qs_ks_types, ONLY: qs_ks_did_change
USE qs_rho_types, ONLY: qs_rho_get,&
qs_rho_type
USE qs_scf_output, ONLY: qs_scf_write_mos
USE qs_scf_types, ONLY: qs_scf_env_type
USE qs_subsys_types, ONLY: qs_subsys_get,&
qs_subsys_type
USE semi_empirical_types, ONLY: get_se_param,&
semi_empirical_type
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
! Global parameters
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_scf_post_se'
PUBLIC :: scf_post_calculation_se
CONTAINS
! **************************************************************************************************
!> \brief collects possible post - scf calculations and prints info / computes properties.
!> specific for Semi-empirical calculations
!> \param qs_env the qs_env in which the qs_env lives
!> \par History
!> 07.2008 created [tlaino] - Split from qs_scf_post (general)
!> \author tlaino
!> \note
!> this function changes mo_eigenvectors and mo_eigenvalues, depending on the print keys.
!> In particular, MO_CUBES causes the MOs to be rotated to make them eigenstates of the KS
!> matrix, and mo_eigenvalues is updated accordingly. This can, for unconverged wavefunctions,
!> change afterwards slightly the forces (hence small numerical differences between MD
!> with and without the debug print level). Ideally this should not happen...
! **************************************************************************************************
SUBROUTINE scf_post_calculation_se(qs_env)
TYPE(qs_environment_type), POINTER :: qs_env
CHARACTER(len=*), PARAMETER :: routineN = 'scf_post_calculation_se'
INTEGER :: handle, output_unit
LOGICAL :: explicit, my_localized_wfn
TYPE(cp_logger_type), POINTER :: logger
TYPE(mp_para_env_type), POINTER :: para_env
TYPE(particle_list_type), POINTER :: particles
TYPE(qs_rho_type), POINTER :: rho
TYPE(qs_subsys_type), POINTER :: subsys
TYPE(section_vals_type), POINTER :: input, print_key, wfn_mix_section
CALL timeset(routineN, handle)
! Writes the data that is already available in qs_env
CALL write_available_results(qs_env)
my_localized_wfn = .FALSE.
NULLIFY (rho, subsys, particles, input, print_key, para_env)
logger => cp_get_default_logger()
output_unit = cp_logger_get_default_io_unit(logger)
CPASSERT(ASSOCIATED(qs_env))
! Here we start with data that needs a postprocessing...
CALL get_qs_env(qs_env, &
rho=rho, &
input=input, &
subsys=subsys, &
para_env=para_env)
CALL qs_subsys_get(subsys, particles=particles)
! Compute Atomic Charges
CALL qs_scf_post_charges(input, logger, qs_env, rho, para_env)
! Moments of charge distribution
CALL qs_scf_post_moments(input, logger, qs_env)
! MO_CUBES
print_key => section_vals_get_subs_vals(section_vals=input, &
subsection_name="DFT%PRINT%MO_CUBES")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
CPWARN("Printing of MO cube files not implemented for Semi-Empirical method.")
END IF
! STM
print_key => section_vals_get_subs_vals(section_vals=input, &
subsection_name="DFT%PRINT%STM")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
CPWARN("STM not implemented for Semi-Empirical method.")
END IF
! DFT+U
print_key => section_vals_get_subs_vals(section_vals=input, &
subsection_name="DFT%PRINT%PLUS_U")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
CPWARN("DFT+U not available for Semi-Empirical method.")
END IF
! Kinetic Energy
print_key => section_vals_get_subs_vals(section_vals=input, &
subsection_name="DFT%PRINT%KINETIC_ENERGY")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
CPWARN("Kinetic energy not available for Semi-Empirical method.")
END IF
! Wavefunction mixing
wfn_mix_section => section_vals_get_subs_vals(input, "DFT%PRINT%WFN_MIX")
CALL section_vals_get(wfn_mix_section, explicit=explicit)
IF (explicit .AND. .NOT. qs_env%run_rtp) THEN
CPWARN("Wavefunction mixing not implemented for Semi-Empirical method.")
END IF
! Print coherent X-ray diffraction spectrum
print_key => section_vals_get_subs_vals(section_vals=input, &
subsection_name="DFT%PRINT%XRAY_DIFFRACTION_SPECTRUM")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
CPWARN("XRAY_DIFFRACTION_SPECTRUM not implemented for Semi-Empirical calculations!")
END IF
! Calculation of Electric Field Gradients
print_key => section_vals_get_subs_vals(section_vals=input, &
subsection_name="DFT%PRINT%ELECTRIC_FIELD_GRADIENT")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
CPWARN("ELECTRIC_FIELD_GRADIENT not implemented for Semi-Empirical calculations!")
END IF
! Calculation of EPR Hyperfine Coupling Tensors
print_key => section_vals_get_subs_vals(section_vals=input, &
subsection_name="DFT%PRINT%HYPERFINE_COUPLING_TENSOR")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), &
cp_p_file)) THEN
CPWARN("HYPERFINE_COUPLING_TENSOR not implemented for Semi-Empirical calculations!")
END IF
CALL timestop(handle)
END SUBROUTINE scf_post_calculation_se
! **************************************************************************************************
!> \brief Computes and prints electric dipole moments
!> We use the approximation for NDDO from
!> Pople and Beveridge, Approximate Molecular Orbital Theory,
!> Mc Graw Hill 1970
!> mu = \sum_A [ Q_A * R_a + Tr(P_A*D_A) ]
!> \param input ...
!> \param logger ...
!> \param qs_env the qs_env in which the qs_env lives
! **************************************************************************************************
SUBROUTINE qs_scf_post_moments(input, logger, qs_env)
TYPE(section_vals_type), POINTER :: input
TYPE(cp_logger_type), POINTER :: logger
TYPE(qs_environment_type), POINTER :: qs_env
CHARACTER(LEN=default_string_length) :: description, dipole_type
COMPLEX(KIND=dp) :: dzeta, zeta
COMPLEX(KIND=dp), DIMENSION(3) :: dggamma, dzphase, ggamma, zphase
INTEGER :: i, iat, iatom, ikind, ix, j, nat, natom, &
natorb, nkind, nspin, reference, &
unit_nr
LOGICAL :: do_berry, found
REAL(KIND=dp) :: charge_tot, ci(3), dci(3), dipole(3), dipole_deriv(3), drcc(3), dria(3), &
dtheta, gvec(3), q, rcc(3), ria(3), tcharge(2), theta, tmp(3), via(3), zeff
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: ncharge
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: mom
REAL(KIND=dp), DIMENSION(:), POINTER :: ref_point
REAL(KIND=dp), DIMENSION(:, :), POINTER :: pblock
TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
TYPE(cell_type), POINTER :: cell
TYPE(cp_result_type), POINTER :: results
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_p
TYPE(dft_control_type), POINTER :: dft_control
TYPE(gto_basis_set_type), POINTER :: basis_set
TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
TYPE(qs_rho_type), POINTER :: rho
TYPE(section_vals_type), POINTER :: print_key
TYPE(semi_empirical_type), POINTER :: se_kind
NULLIFY (results)
print_key => section_vals_get_subs_vals(input, "DFT%PRINT%MOMENTS")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
! Dipole Moments
unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MOMENTS", &
extension=".data", middle_name="se_dipole", log_filename=.FALSE.)
! Reference point
reference = section_get_ival(print_key, keyword_name="REFERENCE")
NULLIFY (ref_point)
description = '[DIPOLE]'
CALL section_vals_val_get(print_key, "REF_POINT", r_vals=ref_point)
CALL section_vals_val_get(print_key, "PERIODIC", l_val=do_berry)
CALL get_reference_point(rcc, drcc, qs_env=qs_env, reference=reference, &
ref_point=ref_point)
!
NULLIFY (particle_set)
CALL get_qs_env(qs_env=qs_env, &
rho=rho, &
cell=cell, &
atomic_kind_set=atomic_kind_set, &
natom=natom, &
qs_kind_set=qs_kind_set, &
particle_set=particle_set, &
results=results, &
dft_control=dft_control)
CALL qs_rho_get(rho, rho_ao=matrix_p)
nspin = SIZE(matrix_p)
nkind = SIZE(atomic_kind_set)
! net charges
ALLOCATE (ncharge(natom))
ncharge = 0.0_dp
DO ikind = 1, nkind
CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
CALL get_qs_kind(qs_kind_set(ikind), se_parameter=se_kind)
CALL get_se_param(se_kind, zeff=zeff, natorb=natorb)
DO iatom = 1, nat
iat = atomic_kind_set(ikind)%atom_list(iatom)
tcharge = 0.0_dp
DO i = 1, nspin
CALL dbcsr_get_block_p(matrix=matrix_p(i)%matrix, row=iat, col=iat, &
block=pblock, found=found)
IF (found) THEN
DO j = 1, natorb
tcharge(i) = tcharge(i) + pblock(j, j)
END DO
END IF
END DO
ncharge(iat) = zeff - SUM(tcharge)
END DO
END DO
! Contributions from net atomic charges
! Dipole deriv will be the derivative of the Dipole(dM/dt=\sum e_j v_j)
dipole_deriv = 0.0_dp
dipole = 0.0_dp
IF (do_berry) THEN
dipole_type = "periodic (Berry phase)"
rcc = pbc(rcc, cell)
charge_tot = 0._dp
charge_tot = SUM(ncharge)
ria = twopi*MATMUL(cell%h_inv, rcc)
zphase = CMPLX(COS(ria), SIN(ria), dp)**charge_tot
dria = twopi*MATMUL(cell%h_inv, drcc)
dzphase = charge_tot*CMPLX(-SIN(ria), COS(ria), dp)**(charge_tot - 1.0_dp)*dria
ggamma = CMPLX(1.0_dp, 0.0_dp, KIND=dp)
dggamma = CMPLX(0.0_dp, 0.0_dp, KIND=dp)
DO ikind = 1, SIZE(atomic_kind_set)
CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
DO i = 1, nat
iat = atomic_kind_set(ikind)%atom_list(i)
ria = particle_set(iat)%r(:)
ria = pbc(ria, cell)
via = particle_set(iat)%v(:)
q = ncharge(iat)
DO j = 1, 3
gvec = twopi*cell%h_inv(j, :)
theta = SUM(ria(:)*gvec(:))
dtheta = SUM(via(:)*gvec(:))
zeta = CMPLX(COS(theta), SIN(theta), KIND=dp)**(-q)
dzeta = -q*CMPLX(-SIN(theta), COS(theta), KIND=dp)**(-q - 1.0_dp)*dtheta
dggamma(j) = dggamma(j)*zeta + ggamma(j)*dzeta
ggamma(j) = ggamma(j)*zeta
END DO
END DO
END DO
dggamma = dggamma*zphase + ggamma*dzphase
ggamma = ggamma*zphase
IF (ALL(REAL(ggamma, KIND=dp) /= 0.0_dp)) THEN
tmp = AIMAG(ggamma)/REAL(ggamma, KIND=dp)
ci = ATAN(tmp)
dci = (1.0_dp/(1.0_dp + tmp**2))* &
(AIMAG(dggamma)*REAL(ggamma, KIND=dp) - AIMAG(ggamma)* &
REAL(dggamma, KIND=dp))/(REAL(ggamma, KIND=dp))**2
dipole = MATMUL(cell%hmat, ci)/twopi
dipole_deriv = MATMUL(cell%hmat, dci)/twopi
END IF
ELSE
dipole_type = "non-periodic"
DO i = 1, natom
! no pbc(particle_set(i)%r(:),cell) so that the total dipole is the sum of the molecular dipoles
ria = particle_set(i)%r(:)
q = ncharge(i)
dipole = dipole - q*(ria - rcc)
dipole_deriv(:) = dipole_deriv(:) - q*(particle_set(i)%v(:) - drcc)
END DO
END IF
! Contributions from atomic polarization
! No contribution to dipole derivatives
DO ikind = 1, nkind
CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis_set)
CALL get_qs_kind(qs_kind_set(ikind), se_parameter=se_kind)
CALL get_se_param(se_kind, natorb=natorb)
ALLOCATE (mom(natorb, natorb, 3))
mom = 0.0_dp
CALL atomic_moments(mom, basis_set)
DO iatom = 1, nat
iat = atomic_kind_set(ikind)%atom_list(iatom)
DO i = 1, nspin
CALL dbcsr_get_block_p(matrix=matrix_p(i)%matrix, row=iat, col=iat, &
block=pblock, found=found)
IF (found) THEN
CPASSERT(natorb == SIZE(pblock, 1))
ix = coset(1, 0, 0) - 1
dipole(1) = dipole(1) + SUM(pblock*mom(:, :, ix))
ix = coset(0, 1, 0) - 1
dipole(2) = dipole(2) + SUM(pblock*mom(:, :, ix))
ix = coset(0, 0, 1) - 1
dipole(3) = dipole(3) + SUM(pblock*mom(:, :, ix))
END IF
END DO
END DO
DEALLOCATE (mom)
END DO
CALL cp_results_erase(results=results, description=description)
CALL put_results(results=results, description=description, &
values=dipole(1:3))
IF (unit_nr > 0) THEN
WRITE (unit_nr, '(/,T2,A,T31,A50)') &
'SE_DIPOLE| Dipole type', ADJUSTR(TRIM(dipole_type))
WRITE (unit_nr, '(T2,A,T30,3(1X,F16.8))') &
'SE_DIPOLE| Moment [a.u.]', dipole(1:3)
WRITE (unit_nr, '(T2,A,T30,3(1X,F16.8))') &
'SE_DIPOLE| Moment [Debye]', dipole(1:3)*debye
WRITE (unit_nr, '(T2,A,T30,3(1X,F16.8))') &
'SE_DIPOLE| Derivative [a.u.]', dipole_deriv(1:3)
END IF
CALL cp_print_key_finished_output(unit_nr, logger, print_key)
END IF
END SUBROUTINE qs_scf_post_moments
! **************************************************************************************************
!> \brief Computes the dipole integrals for an atom (a|x|b), a,b on atom A
!> \param mom ...
!> \param basis_set ...
! **************************************************************************************************
SUBROUTINE atomic_moments(mom, basis_set)
REAL(KIND=dp), DIMENSION(:, :, :) :: mom
TYPE(gto_basis_set_type), POINTER :: basis_set
INTEGER :: i, iset, jset, ncoa, ncob, nm, nset, &
sgfa, sgfb
INTEGER, DIMENSION(:), POINTER :: la_max, la_min, npgf, nsgf
INTEGER, DIMENSION(:, :), POINTER :: first_sgf
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: work
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: mab
REAL(KIND=dp), DIMENSION(3) :: rac, rbc
REAL(KIND=dp), DIMENSION(:, :), POINTER :: rpgf, sphi, zet
rac = 0.0_dp
rbc = 0.0_dp
first_sgf => basis_set%first_sgf
la_max => basis_set%lmax
la_min => basis_set%lmin
npgf => basis_set%npgf
nset = basis_set%nset
nsgf => basis_set%nsgf_set
rpgf => basis_set%pgf_radius
sphi => basis_set%sphi
zet => basis_set%zet
nm = 0
DO iset = 1, nset
ncoa = npgf(iset)*ncoset(la_max(iset))
nm = MAX(nm, ncoa)
END DO
ALLOCATE (mab(nm, nm, 4), work(nm, nm))
DO iset = 1, nset
ncoa = npgf(iset)*ncoset(la_max(iset))
sgfa = first_sgf(1, iset)
DO jset = 1, nset
ncob = npgf(jset)*ncoset(la_max(jset))
sgfb = first_sgf(1, jset)
!*** Calculate the primitive integrals ***
CALL moment(la_max(iset), npgf(iset), zet(:, iset), rpgf(:, iset), la_min(iset), &
la_max(jset), npgf(jset), zet(:, jset), rpgf(:, jset), 1, rac, rbc, mab)
!*** Contraction step ***
DO i = 1, 3
CALL dgemm("N", "N", ncoa, nsgf(jset), ncob, 1.0_dp, mab(1, 1, i), SIZE(mab, 1), &
sphi(1, sgfb), SIZE(sphi, 1), 0.0_dp, work(1, 1), SIZE(work, 1))
CALL dgemm("T", "N", nsgf(iset), nsgf(jset), ncoa, 1.0_dp, sphi(1, sgfa), SIZE(sphi, 1), &
work(1, 1), SIZE(work, 1), 1.0_dp, mom(sgfa, sgfb, i), SIZE(mom, 1))
END DO
END DO
END DO
DEALLOCATE (mab, work)
END SUBROUTINE atomic_moments
! **************************************************************************************************
!> \brief Computes and Prints Atomic Charges with several methods
!> \param input ...
!> \param logger ...
!> \param qs_env the qs_env in which the qs_env lives
!> \param rho ...
!> \param para_env ...
! **************************************************************************************************
SUBROUTINE qs_scf_post_charges(input, logger, qs_env, rho, para_env)
TYPE(section_vals_type), POINTER :: input
TYPE(cp_logger_type), POINTER :: logger
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(qs_rho_type), POINTER :: rho
TYPE(mp_para_env_type), POINTER :: para_env
CHARACTER(LEN=2) :: aname
INTEGER :: i, iat, iatom, ikind, j, nat, natom, &
natorb, nkind, nspin, unit_nr
LOGICAL :: found
REAL(KIND=dp) :: npe, zeff
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: mcharge
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: charges
REAL(KIND=dp), DIMENSION(:, :), POINTER :: pblock
TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_p
TYPE(dft_control_type), POINTER :: dft_control
TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
TYPE(section_vals_type), POINTER :: print_key
TYPE(semi_empirical_type), POINTER :: se_kind
NULLIFY (particle_set)
CALL get_qs_env(qs_env=qs_env, &
atomic_kind_set=atomic_kind_set, &
natom=natom, &
qs_kind_set=qs_kind_set, &
particle_set=particle_set, &
dft_control=dft_control)
! Compute the mulliken charges
print_key => section_vals_get_subs_vals(input, "DFT%PRINT%MULLIKEN")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MULLIKEN", extension=".mulliken", log_filename=.FALSE.)
CALL qs_rho_get(rho, rho_ao=matrix_p)
nspin = SIZE(matrix_p)
npe = REAL(para_env%num_pe, KIND=dp)
ALLOCATE (charges(natom, nspin), mcharge(natom))
charges = 0.0_dp
mcharge = 0.0_dp
! calculate atomic charges
nkind = SIZE(atomic_kind_set)
DO ikind = 1, nkind
CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
CALL get_qs_kind(qs_kind_set(ikind), se_parameter=se_kind)
CALL get_se_param(se_kind, zeff=zeff, natorb=natorb)
DO iatom = 1, nat
iat = atomic_kind_set(ikind)%atom_list(iatom)
DO i = 1, nspin
CALL dbcsr_get_block_p(matrix=matrix_p(i)%matrix, row=iat, col=iat, &
block=pblock, found=found)
IF (found) THEN
DO j = 1, natorb
charges(iat, i) = charges(iat, i) + pblock(j, j)
END DO
END IF
END DO
mcharge(iat) = zeff/npe - SUM(charges(iat, 1:nspin))
END DO
END DO
!
CALL para_env%sum(charges)
CALL para_env%sum(mcharge)
!
IF (unit_nr > 0) THEN
WRITE (UNIT=unit_nr, FMT="(/,/,T2,A)") "POPULATION ANALYSIS"
IF (nspin == 1) THEN
WRITE (UNIT=unit_nr, FMT="(/,T2,A,T70,A)") &
" # Atom Element Kind Atomic population", " Net charge"
DO ikind = 1, nkind
CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
CALL get_qs_kind(qs_kind_set(ikind), se_parameter=se_kind, element_symbol=aname)
DO iatom = 1, nat
iat = atomic_kind_set(ikind)%atom_list(iatom)
WRITE (UNIT=unit_nr, &
FMT="(T2,I7,6X,A2,3X,I6,T39,F12.6,T69,F12.6)") &
iat, aname, ikind, charges(iat, 1), mcharge(iat)
END DO
END DO
WRITE (UNIT=unit_nr, &
FMT="(T2,A,T39,F12.6,T69,F12.6,/)") &
"# Total charge", SUM(charges(:, 1)), SUM(mcharge(:))
ELSE
WRITE (UNIT=unit_nr, FMT="(/,T2,A)") &
"# Atom Element Kind Atomic population (alpha,beta) Net charge Spin moment"
DO ikind = 1, nkind
CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
CALL get_qs_kind(qs_kind_set(ikind), se_parameter=se_kind, element_symbol=aname)
DO iatom = 1, nat
iat = atomic_kind_set(ikind)%atom_list(iatom)
WRITE (UNIT=unit_nr, &
FMT="(T2,I6,5X,A2,2X,I6,T29,4(1X,F12.6))") &
iat, aname, ikind, charges(iat, 1:2), mcharge(iat), charges(iat, 1) - charges(iat, 2)
END DO
END DO
WRITE (UNIT=unit_nr, &
FMT="(T2,A,T29,4(1X,F12.6),/)") &
"# Total charge and spin", SUM(charges(:, 1)), SUM(charges(:, 2)), SUM(mcharge(:))
END IF
END IF
CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MULLIKEN")
DEALLOCATE (charges, mcharge)
END IF
! EEQ Charges
print_key => section_vals_get_subs_vals(input, "DFT%PRINT%EEQ_CHARGES")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%EEQ_CHARGES", &
extension=".eeq", log_filename=.FALSE.)
CALL eeq_print(qs_env, unit_nr, print_level=1)
CALL cp_print_key_finished_output(unit_nr, logger, print_key)
END IF
! Compute the Lowdin charges
print_key => section_vals_get_subs_vals(input, "DFT%PRINT%LOWDIN")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
CPWARN("Lowdin charges not available for semi-empirical calculations!")
END IF
! Hirshfeld charges
print_key => section_vals_get_subs_vals(input, "DFT%PRINT%HIRSHFELD")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
CPWARN("Hirshfeld charges not available for semi-empirical calculations!")
END IF
! MAO
print_key => section_vals_get_subs_vals(input, "DFT%PRINT%MAO_ANALYSIS")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
CPWARN("MAO analysis not available for semi-empirical calculations!")
END IF
! ED
print_key => section_vals_get_subs_vals(input, "DFT%PRINT%ENERGY_DECOMPOSITION_ANALYSIS")
IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
CPWARN("ED analysis not available for semi-empirical calculations!")
END IF
END SUBROUTINE qs_scf_post_charges
! **************************************************************************************************
!> \brief Write QS results always available (if switched on through the print_keys)
!> \param qs_env the qs_env in which the qs_env lives
! **************************************************************************************************
SUBROUTINE write_available_results(qs_env)
TYPE(qs_environment_type), POINTER :: qs_env
CHARACTER(len=*), PARAMETER :: routineN = 'write_available_results'
INTEGER :: after, handle, ispin, iw, output_unit
LOGICAL :: omit_headers
TYPE(cp_logger_type), POINTER :: logger
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ks_rmpv, rho_ao
TYPE(dft_control_type), POINTER :: dft_control
TYPE(mp_para_env_type), POINTER :: para_env
TYPE(particle_list_type), POINTER :: particles
TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
TYPE(qs_rho_type), POINTER :: rho
TYPE(qs_scf_env_type), POINTER :: scf_env
TYPE(qs_subsys_type), POINTER :: subsys
TYPE(section_vals_type), POINTER :: dft_section, input
CALL timeset(routineN, handle)
NULLIFY (dft_control, particle_set, rho, ks_rmpv, dft_section, input, &
particles, subsys, para_env, rho_ao)
logger => cp_get_default_logger()
output_unit = cp_logger_get_default_io_unit(logger)
CPASSERT(ASSOCIATED(qs_env))
CALL get_qs_env(qs_env, &
dft_control=dft_control, &
particle_set=particle_set, &
rho=rho, &
matrix_ks=ks_rmpv, &
input=input, &
subsys=subsys, &
scf_env=scf_env, &
para_env=para_env)
CALL qs_subsys_get(subsys, particles=particles)
CALL qs_rho_get(rho, rho_ao=rho_ao)
! Print MO information if requested
CALL qs_scf_write_mos(qs_env, scf_env, final_mos=.TRUE.)
! Aat the end of SCF printout the projected DOS for each atomic kind
dft_section => section_vals_get_subs_vals(input, "DFT")
IF (BTEST(cp_print_key_should_output(logger%iter_info, dft_section, "PRINT%PDOS") &
, cp_p_file)) THEN
CPWARN("PDOS not implemented for Semi-Empirical calculations!")
END IF
! Print the total density (electronic + core charge)
IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
"DFT%PRINT%TOT_DENSITY_CUBE"), cp_p_file)) THEN
CPWARN("TOT_DENSITY_CUBE not implemented for Semi-Empirical calculations!")
END IF
! Write cube file with electron density
IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
"DFT%PRINT%E_DENSITY_CUBE"), cp_p_file)) THEN
CPWARN("E_DENSITY_CUBE not implemented for Semi-Empirical calculations!")
END IF ! print key
! Write cube file with EFIELD
IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
"DFT%PRINT%EFIELD_CUBE"), cp_p_file)) THEN
CPWARN("EFIELD_CUBE not implemented for Semi-Empirical calculations!")
END IF ! print key
! Write cube file with ELF
IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
"DFT%PRINT%ELF_CUBE"), cp_p_file)) THEN
CPWARN("ELF function not implemented for Semi-Empirical calculations!")
END IF ! print key
! Print the hartree potential
IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
"DFT%PRINT%V_HARTREE_CUBE"), cp_p_file)) THEN
CPWARN("V_HARTREE_CUBE not implemented for Semi-Empirical calculations!")
END IF
! Print the XC potential
IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
"DFT%PRINT%V_XC_CUBE"), cp_p_file)) THEN
CPWARN("V_XC_CUBE not available for Semi-Empirical calculations!")
END IF
! Write the density matrix
CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%OMIT_HEADERS", l_val=omit_headers)
IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
"DFT%PRINT%AO_MATRICES/DENSITY"), cp_p_file)) THEN
iw = cp_print_key_unit_nr(logger, input, "DFT%PRINT%AO_MATRICES/DENSITY", &
extension=".Log")
CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%NDIGITS", i_val=after)
after = MIN(MAX(after, 1), 16)
DO ispin = 1, dft_control%nspins
CALL cp_dbcsr_write_sparse_matrix(rho_ao(ispin)%matrix, 4, after, qs_env, &
para_env, output_unit=iw, omit_headers=omit_headers)
END DO
CALL cp_print_key_finished_output(iw, logger, input, &
"DFT%PRINT%AO_MATRICES/DENSITY")
END IF
! The Kohn-Sham matrix itself
IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
"DFT%PRINT%AO_MATRICES/KOHN_SHAM_MATRIX"), cp_p_file)) THEN
CALL qs_ks_update_qs_env(qs_env, calculate_forces=.FALSE., just_energy=.FALSE.)
CALL qs_ks_did_change(qs_env%ks_env, rho_changed=.TRUE.)
iw = cp_print_key_unit_nr(logger, input, "DFT%PRINT%AO_MATRICES/KOHN_SHAM_MATRIX", &
extension=".Log")
CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%NDIGITS", i_val=after)
after = MIN(MAX(after, 1), 16)
CALL cp_dbcsr_write_sparse_matrix(ks_rmpv(1)%matrix, 4, after, qs_env, &
para_env, output_unit=iw, omit_headers=omit_headers)
CALL cp_print_key_finished_output(iw, logger, input, &
"DFT%PRINT%AO_MATRICES/KOHN_SHAM_MATRIX")
END IF
CALL timestop(handle)
END SUBROUTINE write_available_results
END MODULE qs_scf_post_se