-
Notifications
You must be signed in to change notification settings - Fork 1
/
qs_local_properties.F
373 lines (326 loc) · 16.7 KB
/
qs_local_properties.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Routines for calculating local energy and stress tensor
!> \author JGH
!> \par History
!> - 07.2019 created
! **************************************************************************************************
MODULE qs_local_properties
USE bibliography, ONLY: Cohen2000,&
Filippetti2000,&
Rogers2002,&
cite_reference
USE cp_control_types, ONLY: dft_control_type
USE cp_dbcsr_api, ONLY: dbcsr_copy,&
dbcsr_p_type,&
dbcsr_set,&
dbcsr_type
USE cp_dbcsr_operations, ONLY: dbcsr_allocate_matrix_set
USE cp_log_handling, ONLY: cp_get_default_logger,&
cp_logger_get_default_io_unit,&
cp_logger_type
USE input_section_types, ONLY: section_vals_get_subs_vals,&
section_vals_type
USE kinds, ONLY: dp
USE mathlib, ONLY: det_3x3
USE pw_env_types, ONLY: pw_env_get,&
pw_env_type
USE pw_methods, ONLY: pw_axpy,&
pw_copy,&
pw_derive,&
pw_integrate_function,&
pw_multiply,&
pw_transfer,&
pw_zero
USE pw_pool_types, ONLY: pw_pool_type
USE pw_types, ONLY: pw_c1d_gs_type,&
pw_r3d_rs_type
USE qs_collocate_density, ONLY: calculate_rho_elec
USE qs_core_energies, ONLY: calculate_ptrace
USE qs_energy_types, ONLY: qs_energy_type
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_ks_methods, ONLY: calc_rho_tot_gspace
USE qs_ks_types, ONLY: qs_ks_env_type,&
set_ks_env
USE qs_matrix_w, ONLY: compute_matrix_w
USE qs_rho_types, ONLY: qs_rho_get,&
qs_rho_type
USE qs_vxc, ONLY: qs_xc_density
USE virial_types, ONLY: virial_type
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_local_properties'
PUBLIC :: qs_local_energy, qs_local_stress
! **************************************************************************************************
CONTAINS
! **************************************************************************************************
!> \brief Routine to calculate the local energy
!> \param qs_env the qs_env to update
!> \param energy_density ...
!> \par History
!> 07.2019 created
!> \author JGH
! **************************************************************************************************
SUBROUTINE qs_local_energy(qs_env, energy_density)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(pw_r3d_rs_type), INTENT(INOUT) :: energy_density
CHARACTER(LEN=*), PARAMETER :: routineN = 'qs_local_energy'
INTEGER :: handle, img, iounit, ispin, nimages, &
nkind, nspins
LOGICAL :: gapw, gapw_xc
REAL(KIND=dp) :: eban, eband, eh, exc, ovol
TYPE(cp_logger_type), POINTER :: logger
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: rho_ao
TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_ks, matrix_s, matrix_w, rho_ao_kp
TYPE(dbcsr_type), POINTER :: matrix
TYPE(dft_control_type), POINTER :: dft_control
TYPE(pw_c1d_gs_type) :: edens_g
TYPE(pw_c1d_gs_type), POINTER :: rho_core, rho_tot_gspace
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type) :: band_density, edens_r, hartree_density, &
xc_density
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: rho_r
TYPE(pw_r3d_rs_type), POINTER :: rho_tot_rspace, v_hartree_rspace
TYPE(qs_energy_type), POINTER :: energy
TYPE(qs_ks_env_type), POINTER :: ks_env
TYPE(qs_rho_type), POINTER :: rho, rho_struct
TYPE(section_vals_type), POINTER :: input, xc_section
CALL timeset(routineN, handle)
CALL cite_reference(Cohen2000)
CPASSERT(ASSOCIATED(qs_env))
logger => cp_get_default_logger()
iounit = cp_logger_get_default_io_unit()
! Check for GAPW method : additional terms for local densities
CALL get_qs_env(qs_env, nkind=nkind, dft_control=dft_control)
gapw = dft_control%qs_control%gapw
gapw_xc = dft_control%qs_control%gapw_xc
nimages = dft_control%nimages
nspins = dft_control%nspins
! get working arrays
CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
CALL auxbas_pw_pool%create_pw(band_density)
CALL auxbas_pw_pool%create_pw(hartree_density)
CALL auxbas_pw_pool%create_pw(xc_density)
! w matrix
CALL get_qs_env(qs_env, matrix_w_kp=matrix_w)
IF (.NOT. ASSOCIATED(matrix_w)) THEN
CALL get_qs_env(qs_env, &
ks_env=ks_env, &
matrix_s_kp=matrix_s)
matrix => matrix_s(1, 1)%matrix
CALL dbcsr_allocate_matrix_set(matrix_w, nspins, nimages)
DO ispin = 1, nspins
DO img = 1, nimages
ALLOCATE (matrix_w(ispin, img)%matrix)
CALL dbcsr_copy(matrix_w(ispin, img)%matrix, matrix, name="W MATRIX")
CALL dbcsr_set(matrix_w(ispin, img)%matrix, 0.0_dp)
END DO
END DO
CALL set_ks_env(ks_env, matrix_w_kp=matrix_w)
END IF
! band structure energy density
CALL compute_matrix_w(qs_env, .TRUE.)
CALL get_qs_env(qs_env, ks_env=ks_env, matrix_w_kp=matrix_w)
CALL auxbas_pw_pool%create_pw(edens_r)
CALL auxbas_pw_pool%create_pw(edens_g)
CALL pw_zero(band_density)
DO ispin = 1, nspins
rho_ao => matrix_w(ispin, :)
CALL calculate_rho_elec(matrix_p_kp=rho_ao, &
rho=edens_r, &
rho_gspace=edens_g, &
ks_env=ks_env, soft_valid=(gapw .OR. gapw_xc))
CALL pw_axpy(edens_r, band_density)
END DO
CALL auxbas_pw_pool%give_back_pw(edens_r)
CALL auxbas_pw_pool%give_back_pw(edens_g)
! Hartree energy density correction = -0.5 * V_H(r) * [rho(r) - rho_core(r)]
ALLOCATE (rho_tot_gspace, rho_tot_rspace)
CALL auxbas_pw_pool%create_pw(rho_tot_gspace)
CALL auxbas_pw_pool%create_pw(rho_tot_rspace)
NULLIFY (rho_core)
CALL get_qs_env(qs_env, &
v_hartree_rspace=v_hartree_rspace, &
rho_core=rho_core, rho=rho)
CALL qs_rho_get(rho, rho_r=rho_r)
IF (ASSOCIATED(rho_core)) THEN
CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho)
CALL pw_transfer(rho_core, rho_tot_rspace)
ELSE
CALL pw_zero(rho_tot_rspace)
END IF
DO ispin = 1, nspins
CALL pw_axpy(rho_r(ispin), rho_tot_rspace, alpha=-1.0_dp)
END DO
CALL pw_zero(hartree_density)
ovol = 0.5_dp/hartree_density%pw_grid%dvol
CALL pw_multiply(hartree_density, v_hartree_rspace, rho_tot_rspace, alpha=ovol)
CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
CALL auxbas_pw_pool%give_back_pw(rho_tot_rspace)
DEALLOCATE (rho_tot_gspace, rho_tot_rspace)
IF (dft_control%do_admm) THEN
CALL cp_warn(__LOCATION__, "ADMM not supported for local energy calculation")
END IF
IF (gapw_xc .OR. gapw) THEN
CALL cp_warn(__LOCATION__, "GAPW/GAPW_XC not supported for local energy calculation")
END IF
! XC energy density correction = E_xc(r) - V_xc(r)*rho(r)
CALL get_qs_env(qs_env, input=input)
xc_section => section_vals_get_subs_vals(input, "DFT%XC")
CALL get_qs_env(qs_env=qs_env, rho=rho_struct)
!
CALL qs_xc_density(ks_env, rho_struct, xc_section, xc_ener=xc_density)
!
! energies
CALL get_qs_env(qs_env=qs_env, energy=energy)
eban = pw_integrate_function(band_density)
eh = pw_integrate_function(hartree_density)
exc = pw_integrate_function(xc_density)
! band energy
CALL get_qs_env(qs_env, matrix_ks_kp=matrix_ks)
CALL qs_rho_get(rho, rho_ao_kp=rho_ao_kp)
CALL calculate_ptrace(matrix_ks, rho_ao_kp, eband, nspins)
! get full density
CALL pw_copy(band_density, energy_density)
CALL pw_axpy(hartree_density, energy_density)
CALL pw_axpy(xc_density, energy_density)
IF (iounit > 0) THEN
WRITE (UNIT=iounit, FMT="(/,T3,A)") REPEAT("=", 78)
WRITE (UNIT=iounit, FMT="(T4,A,T52,A,T75,A)") "Local Energy Calculation", "GPW/GAPW", "Local"
WRITE (UNIT=iounit, FMT="(T4,A,T45,F15.8,T65,F15.8)") "Band Energy", eband, eban
WRITE (UNIT=iounit, FMT="(T4,A,T65,F15.8)") "Hartree Energy Correction", eh
WRITE (UNIT=iounit, FMT="(T4,A,T65,F15.8)") "XC Energy Correction", exc
WRITE (UNIT=iounit, FMT="(T4,A,T45,F15.8,T65,F15.8)") "Total Energy", &
energy%total, eban + eh + exc + energy%core_overlap + energy%core_self + energy%dispersion
WRITE (UNIT=iounit, FMT="(T3,A)") REPEAT("=", 78)
END IF
! return temp arrays
CALL auxbas_pw_pool%give_back_pw(band_density)
CALL auxbas_pw_pool%give_back_pw(hartree_density)
CALL auxbas_pw_pool%give_back_pw(xc_density)
CALL timestop(handle)
END SUBROUTINE qs_local_energy
! **************************************************************************************************
!> \brief Routine to calculate the local stress
!> \param qs_env the qs_env to update
!> \param stress_tensor ...
!> \param beta ...
!> \par History
!> 07.2019 created
!> \author JGH
! **************************************************************************************************
SUBROUTINE qs_local_stress(qs_env, stress_tensor, beta)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(pw_r3d_rs_type), DIMENSION(:, :), &
INTENT(INOUT), OPTIONAL :: stress_tensor
REAL(KIND=dp), INTENT(IN), OPTIONAL :: beta
CHARACTER(LEN=*), PARAMETER :: routineN = 'qs_local_stress'
INTEGER :: handle, i, iounit, j, nimages, nkind, &
nspins
LOGICAL :: do_stress, gapw, gapw_xc, use_virial
REAL(KIND=dp) :: my_beta
REAL(KIND=dp), DIMENSION(3, 3) :: pv_loc
TYPE(cp_logger_type), POINTER :: logger
TYPE(dft_control_type), POINTER :: dft_control
TYPE(pw_c1d_gs_type) :: v_hartree_gspace
TYPE(pw_c1d_gs_type), DIMENSION(3) :: efield
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type) :: xc_density
TYPE(pw_r3d_rs_type), POINTER :: v_hartree_rspace
TYPE(qs_ks_env_type), POINTER :: ks_env
TYPE(qs_rho_type), POINTER :: rho_struct
TYPE(section_vals_type), POINTER :: input, xc_section
TYPE(virial_type), POINTER :: virial
CALL cp_warn(__LOCATION__, "Local Stress Tensor code is not working, skipping")
RETURN
CALL timeset(routineN, handle)
CALL cite_reference(Filippetti2000)
CALL cite_reference(Rogers2002)
CPASSERT(ASSOCIATED(qs_env))
IF (PRESENT(stress_tensor)) THEN
do_stress = .TRUE.
ELSE
do_stress = .FALSE.
END IF
IF (PRESENT(beta)) THEN
my_beta = beta
ELSE
my_beta = 0.0_dp
END IF
logger => cp_get_default_logger()
iounit = cp_logger_get_default_io_unit()
!!!!!!
CALL cp_warn(__LOCATION__, "Local Stress Tensor code is not tested")
!!!!!!
! Check for GAPW method : additional terms for local densities
CALL get_qs_env(qs_env, nkind=nkind, dft_control=dft_control)
gapw = dft_control%qs_control%gapw
gapw_xc = dft_control%qs_control%gapw_xc
nimages = dft_control%nimages
nspins = dft_control%nspins
! get working arrays
CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
CALL auxbas_pw_pool%create_pw(xc_density)
! init local stress tensor
IF (do_stress) THEN
DO i = 1, 3
DO j = 1, 3
CALL pw_zero(stress_tensor(i, j))
END DO
END DO
END IF
IF (dft_control%do_admm) THEN
CALL cp_warn(__LOCATION__, "ADMM not supported for local energy calculation")
END IF
IF (gapw_xc .OR. gapw) THEN
CALL cp_warn(__LOCATION__, "GAPW/GAPW_XC not supported for local energy calculation")
END IF
! XC energy density correction = E_xc(r) - V_xc(r)*rho(r)
CALL get_qs_env(qs_env, ks_env=ks_env, input=input, rho=rho_struct)
xc_section => section_vals_get_subs_vals(input, "DFT%XC")
!
CALL qs_xc_density(ks_env, rho_struct, xc_section, xc_ener=xc_density)
! Electrical field terms
CALL get_qs_env(qs_env, v_hartree_rspace=v_hartree_rspace)
CALL auxbas_pw_pool%create_pw(v_hartree_gspace)
CALL pw_transfer(v_hartree_rspace, v_hartree_gspace)
DO i = 1, 3
CALL auxbas_pw_pool%create_pw(efield(i))
CALL pw_copy(v_hartree_gspace, efield(i))
END DO
CALL pw_derive(efield(1), (/1, 0, 0/))
CALL pw_derive(efield(2), (/0, 1, 0/))
CALL pw_derive(efield(3), (/0, 0, 1/))
CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace)
DO i = 1, 3
CALL auxbas_pw_pool%give_back_pw(efield(i))
END DO
pv_loc = 0.0_dp
CALL get_qs_env(qs_env=qs_env, virial=virial)
use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
IF (.NOT. use_virial) THEN
CALL cp_warn(__LOCATION__, "Local stress should be used with standard stress calculation.")
END IF
IF (iounit > 0 .AND. use_virial) THEN
WRITE (UNIT=iounit, FMT="(/,T3,A)") REPEAT("=", 78)
WRITE (UNIT=iounit, FMT="(T4,A)") "Local Stress Calculation"
WRITE (UNIT=iounit, FMT="(T42,A,T64,A)") " 1/3 Trace", " Determinant"
WRITE (UNIT=iounit, FMT="(T4,A,T42,F16.8,T64,F16.8)") "Total Stress", &
(pv_loc(1, 1) + pv_loc(2, 2) + pv_loc(3, 3))/3.0_dp, det_3x3(pv_loc)
WRITE (UNIT=iounit, FMT="(T3,A)") REPEAT("=", 78)
END IF
CALL timestop(handle)
END SUBROUTINE qs_local_stress
! **************************************************************************************************
END MODULE qs_local_properties