-
Notifications
You must be signed in to change notification settings - Fork 1
/
qs_harmonics_atom.F
562 lines (473 loc) · 21.2 KB
/
qs_harmonics_atom.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
MODULE qs_harmonics_atom
USE basis_set_types, ONLY: get_gto_basis_set,&
gto_basis_set_type
USE kinds, ONLY: dp
USE lebedev, ONLY: lebedev_grid
USE memory_utilities, ONLY: reallocate
USE orbital_pointers, ONLY: indco,&
indso,&
nco,&
ncoset,&
nso,&
nsoset
USE orbital_transformation_matrices, ONLY: orbtramat
USE spherical_harmonics, ONLY: dy_lm,&
y_lm
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_harmonics_atom'
TYPE harmonics_atom_type
INTEGER :: max_s_harm = -1, llmax = -1, &
max_iso_not0 = -1, &
dmax_iso_not0 = -1, &
damax_iso_not0 = -1, &
ngrid = -1
REAL(dp), DIMENSION(:, :), POINTER :: a => NULL(), slm => NULL()
REAL(dp), DIMENSION(:, :, :), POINTER :: dslm => NULL(), dslm_dxyz => NULL()
REAL(dp), DIMENSION(:, :, :), POINTER :: my_CG => NULL()
REAL(dp), DIMENSION(:, :, :, :), POINTER :: my_CG_dxyz => NULL()
REAL(dp), DIMENSION(:, :, :, :), POINTER :: my_CG_dxyz_asym => NULL()
REAL(dp), DIMENSION(:), POINTER :: slm_int => NULL()
END TYPE harmonics_atom_type
PUBLIC :: allocate_harmonics_atom, &
create_harmonics_atom, &
deallocate_harmonics_atom, &
get_none0_cg_list
PUBLIC :: harmonics_atom_type, get_maxl_CG
INTERFACE get_none0_cg_list
MODULE PROCEDURE get_none0_cg_list3, get_none0_cg_list4
END INTERFACE
CONTAINS
! **************************************************************************************************
!> \brief Allocate a spherical harmonics set for the atom grid.
!> \param harmonics ...
!> \version 1.0
! **************************************************************************************************
SUBROUTINE allocate_harmonics_atom(harmonics)
TYPE(harmonics_atom_type), POINTER :: harmonics
IF (ASSOCIATED(harmonics)) CALL deallocate_harmonics_atom(harmonics)
ALLOCATE (harmonics)
harmonics%max_s_harm = 0
harmonics%llmax = 0
harmonics%max_iso_not0 = 0
harmonics%dmax_iso_not0 = 0
harmonics%damax_iso_not0 = 0
harmonics%ngrid = 0
NULLIFY (harmonics%slm)
NULLIFY (harmonics%dslm)
NULLIFY (harmonics%dslm_dxyz)
NULLIFY (harmonics%slm_int)
NULLIFY (harmonics%my_CG)
NULLIFY (harmonics%my_CG_dxyz)
NULLIFY (harmonics%my_CG_dxyz_asym)
NULLIFY (harmonics%a)
END SUBROUTINE allocate_harmonics_atom
! **************************************************************************************************
!> \brief Deallocate the spherical harmonics set for the atom grid.
!> \param harmonics ...
!> \version 1.0
! **************************************************************************************************
SUBROUTINE deallocate_harmonics_atom(harmonics)
TYPE(harmonics_atom_type), POINTER :: harmonics
IF (ASSOCIATED(harmonics)) THEN
IF (ASSOCIATED(harmonics%slm)) THEN
DEALLOCATE (harmonics%slm)
END IF
IF (ASSOCIATED(harmonics%dslm)) THEN
DEALLOCATE (harmonics%dslm)
END IF
IF (ASSOCIATED(harmonics%dslm_dxyz)) THEN
DEALLOCATE (harmonics%dslm_dxyz)
END IF
IF (ASSOCIATED(harmonics%slm_int)) THEN
DEALLOCATE (harmonics%slm_int)
END IF
IF (ASSOCIATED(harmonics%my_CG)) THEN
DEALLOCATE (harmonics%my_CG)
END IF
IF (ASSOCIATED(harmonics%my_CG_dxyz)) THEN
DEALLOCATE (harmonics%my_CG_dxyz)
END IF
IF (ASSOCIATED(harmonics%my_CG_dxyz_asym)) THEN
DEALLOCATE (harmonics%my_CG_dxyz_asym)
END IF
IF (ASSOCIATED(harmonics%a)) THEN
DEALLOCATE (harmonics%a)
END IF
DEALLOCATE (harmonics)
ELSE
CALL cp_abort(__LOCATION__, &
"The pointer harmonics is not associated and "// &
"cannot be deallocated")
END IF
END SUBROUTINE deallocate_harmonics_atom
! **************************************************************************************************
!> \brief ...
!> \param harmonics ...
!> \param my_CG ...
!> \param na ...
!> \param llmax ...
!> \param maxs ...
!> \param max_s_harm ...
!> \param ll ...
!> \param wa ...
!> \param azi ...
!> \param pol ...
!> \note Slight refactoring + OMP parallelized (03.2020 A. Bussy)
! **************************************************************************************************
SUBROUTINE create_harmonics_atom(harmonics, my_CG, na, llmax, maxs, max_s_harm, ll, wa, azi, pol)
TYPE(harmonics_atom_type), POINTER :: harmonics
REAL(dp), DIMENSION(:, :, :), POINTER :: my_CG
INTEGER, INTENT(IN) :: na, llmax, maxs, max_s_harm, ll
REAL(dp), DIMENSION(:), INTENT(IN) :: wa, azi, pol
CHARACTER(len=*), PARAMETER :: routineN = 'create_harmonics_atom'
INTEGER :: handle, i, ia, ic, is, is1, is2, iso, &
iso1, iso2, l, l1, l2, lx, ly, lz, m, &
m1, m2, n
REAL(dp) :: drx, dry, drz, rx, ry, rz
REAL(dp), DIMENSION(2) :: cin, dylm
REAL(dp), DIMENSION(:), POINTER :: slm_int, y
REAL(dp), DIMENSION(:, :), POINTER :: dc, slm
REAL(dp), DIMENSION(:, :, :), POINTER :: dslm_dxyz
CALL timeset(routineN, handle)
NULLIFY (y, slm, dslm_dxyz, dc)
CPASSERT(ASSOCIATED(harmonics))
harmonics%max_s_harm = max_s_harm
harmonics%llmax = llmax
harmonics%ngrid = na
NULLIFY (harmonics%my_CG, harmonics%my_CG_dxyz, harmonics%my_CG_dxyz_asym)
CALL reallocate(harmonics%my_CG, 1, maxs, 1, maxs, 1, max_s_harm)
CALL reallocate(harmonics%my_CG_dxyz, 1, 3, 1, maxs, 1, maxs, 1, max_s_harm)
CALL reallocate(harmonics%my_CG_dxyz_asym, 1, 3, 1, maxs, 1, maxs, 1, max_s_harm)
DO i = 1, max_s_harm
DO is1 = 1, maxs
harmonics%my_CG(1:maxs, is1, i) = my_CG(1:maxs, is1, i)
END DO
END DO
! allocate and calculate the spherical harmonics LM for this grid
! and their derivatives
NULLIFY (harmonics%slm, harmonics%dslm, harmonics%dslm_dxyz, harmonics%a, harmonics%slm_int)
CALL reallocate(harmonics%slm, 1, na, 1, max_s_harm)
CALL reallocate(harmonics%dslm, 1, 2, 1, na, 1, maxs)
CALL reallocate(harmonics%dslm_dxyz, 1, 3, 1, na, 1, max_s_harm)
CALL reallocate(harmonics%a, 1, 3, 1, na)
CALL reallocate(harmonics%slm_int, 1, max_s_harm)
NULLIFY (slm, dslm_dxyz, slm_int)
slm => harmonics%slm
dslm_dxyz => harmonics%dslm_dxyz
dslm_dxyz = 0.0_dp
slm_int => harmonics%slm_int
slm_int = 0.0_dp
!$OMP PARALLEL DEFAULT(NONE), &
!$OMP SHARED (slm,dslm_dxyz,slm_int,max_s_harm,ll,lebedev_grid,na,harmonics,wa,indco,orbtramat) &
!$OMP SHARED (nso,nsoset,nco,maxs,indso,ncoset,pol,azi,llmax) &
!$OMP PRIVATE(ia,iso,l,m,i,lx,ly,lz,rx,ry,rz,drx,dry,drz,ic,dc,iso1,iso2,cin,dylm) &
!$OMP PRIVATE(is1,l1,m1,is2,l2,m2,is,n,y)
ALLOCATE (y(na))
ALLOCATE (dc(nco(llmax), 3))
!$OMP DO
DO iso = 1, max_s_harm
l = indso(1, iso)
m = indso(2, iso)
CALL y_lm(lebedev_grid(ll)%r, y, l, m)
DO ia = 1, na
slm(ia, iso) = y(ia)
slm_int(iso) = slm_int(iso) + slm(ia, iso)*wa(ia)
END DO ! ia
END DO ! iso
!$OMP END DO
!$OMP DO
DO ia = 1, na
harmonics%a(:, ia) = lebedev_grid(ll)%r(:, ia)
END DO
!$OMP END DO
!
! The derivatives dslm_dxyz and its expansions my_CG_dxyz and my_CG_dxyz_asymm
! are NOT the dSlm/dx but the scaled by r**(l-1) derivatives of the monomial
! terms x^n1 y^n2 z^n3 transformed by spherical harmonics expansion coefficients
!
!$OMP DO
DO ia = 1, na
DO l = 0, indso(1, max_s_harm)
DO ic = 1, nco(l)
lx = indco(1, ic + ncoset(l - 1))
ly = indco(2, ic + ncoset(l - 1))
lz = indco(3, ic + ncoset(l - 1))
IF (lx == 0) THEN
rx = 1.0_dp
drx = 0.0_dp
ELSE IF (lx == 1) THEN
rx = lebedev_grid(ll)%r(1, ia)
drx = 1.0_dp
ELSE
rx = lebedev_grid(ll)%r(1, ia)**lx
drx = REAL(lx, dp)*lebedev_grid(ll)%r(1, ia)**(lx - 1)
END IF
IF (ly == 0) THEN
ry = 1.0_dp
dry = 0.0_dp
ELSE IF (ly == 1) THEN
ry = lebedev_grid(ll)%r(2, ia)
dry = 1.0_dp
ELSE
ry = lebedev_grid(ll)%r(2, ia)**ly
dry = REAL(ly, dp)*lebedev_grid(ll)%r(2, ia)**(ly - 1)
END IF
IF (lz == 0) THEN
rz = 1.0_dp
drz = 0.0_dp
ELSE IF (lz == 1) THEN
rz = lebedev_grid(ll)%r(3, ia)
drz = 1.0_dp
ELSE
rz = lebedev_grid(ll)%r(3, ia)**lz
drz = REAL(lz, dp)*lebedev_grid(ll)%r(3, ia)**(lz - 1)
END IF
dc(ic, 1) = drx*ry*rz
dc(ic, 2) = rx*dry*rz
dc(ic, 3) = rx*ry*drz
END DO
n = nsoset(l - 1)
DO is = 1, nso(l)
iso = is + n
DO ic = 1, nco(l)
dslm_dxyz(:, ia, iso) = dslm_dxyz(:, ia, iso) + &
orbtramat(l)%slm(is, ic)*dc(ic, :)
END DO
END DO
END DO ! l
END DO !ia
!$OMP END DO
! Expansion coefficients of the cartesian derivatives
! of the product of two harmonics :
! d(Y(l1m1) * Y(l2m2))/dx ; d(Y(l1m1) * Y(l2m2))/dy ; d(Y(l1m1) * Y(l2m2))/dz
!$OMP DO COLLAPSE(3)
DO iso1 = 1, maxs
DO iso2 = 1, maxs
DO iso = 1, max_s_harm
rx = 0.0_dp
ry = 0.0_dp
rz = 0.0_dp
DO ia = 1, na
rx = rx + wa(ia)*slm(ia, iso)* &
(dslm_dxyz(1, ia, iso1)*slm(ia, iso2) + slm(ia, iso1)*dslm_dxyz(1, ia, iso2))
ry = ry + wa(ia)*slm(ia, iso)* &
(dslm_dxyz(2, ia, iso1)*slm(ia, iso2) + slm(ia, iso1)*dslm_dxyz(2, ia, iso2))
rz = rz + wa(ia)*slm(ia, iso)* &
(dslm_dxyz(3, ia, iso1)*slm(ia, iso2) + slm(ia, iso1)*dslm_dxyz(3, ia, iso2))
END DO
harmonics%my_CG_dxyz(1, iso1, iso2, iso) = rx
harmonics%my_CG_dxyz(2, iso1, iso2, iso) = ry
harmonics%my_CG_dxyz(3, iso1, iso2, iso) = rz
END DO
END DO
END DO
!$OMP END DO
! Expansion coefficients of the cartesian of the combinations
! Y(l1m1) * d(Y(l2m2))/dx - d(Y(l1m1))/dx * Y(l2m2)
! Y(l1m1) * d(Y(l2m2))/dy - d(Y(l1m1))/dy * Y(l2m2)
! Y(l1m1) * d(Y(l2m2))/dz - d(Y(l1m1))/dz * Y(l2m2)
!$OMP DO COLLAPSE(3)
DO iso1 = 1, maxs
DO iso2 = 1, maxs
DO iso = 1, max_s_harm
drx = 0.0_dp
dry = 0.0_dp
drz = 0.0_dp
DO ia = 1, na
drx = drx + wa(ia)*slm(ia, iso)* &
(-dslm_dxyz(1, ia, iso1)*slm(ia, iso2) + &
slm(ia, iso1)*dslm_dxyz(1, ia, iso2))
dry = dry + wa(ia)*slm(ia, iso)* &
(-dslm_dxyz(2, ia, iso1)*slm(ia, iso2) + &
slm(ia, iso1)*dslm_dxyz(2, ia, iso2))
drz = drz + wa(ia)*slm(ia, iso)* &
(-dslm_dxyz(3, ia, iso1)*slm(ia, iso2) + &
slm(ia, iso1)*dslm_dxyz(3, ia, iso2))
END DO
harmonics%my_CG_dxyz_asym(1, iso1, iso2, iso) = drx
harmonics%my_CG_dxyz_asym(2, iso1, iso2, iso) = dry
harmonics%my_CG_dxyz_asym(3, iso1, iso2, iso) = drz
END DO ! iso
END DO ! iso2
END DO ! iso1
!$OMP END DO
! Calculate the derivatives of the harmonics with respect of the 2 angles
! the first angle (polar) is acos(lebedev_grid(ll)%r(3))
! the second angle (azimutal) is atan(lebedev_grid(ll)%r(2)/lebedev_grid(ll)%r(1))
!$OMP DO
DO iso = 1, maxs
l = indso(1, iso)
m = indso(2, iso)
DO ia = 1, na
cin(1) = pol(ia)
cin(2) = azi(ia)
CALL dy_lm(cin, dylm, l, m)
harmonics%dslm(:, ia, iso) = dylm(:)
END DO
END DO
!$OMP END DO
! expansion coefficients of product of polar angle derivatives (dslm(1...)) in
! spherical harmonics (used for tau functionals)
DEALLOCATE (y, dc)
!$OMP END PARALLEL
CALL timestop(handle)
END SUBROUTINE create_harmonics_atom
! **************************************************************************************************
!> \brief ...
!> \param harmonics ...
!> \param orb_basis ...
!> \param llmax ...
!> \param max_s_harm ...
! **************************************************************************************************
SUBROUTINE get_maxl_CG(harmonics, orb_basis, llmax, max_s_harm)
TYPE(harmonics_atom_type), POINTER :: harmonics
TYPE(gto_basis_set_type), POINTER :: orb_basis
INTEGER, INTENT(IN) :: llmax, max_s_harm
CHARACTER(len=*), PARAMETER :: routineN = 'get_maxl_CG'
INTEGER :: damax_iso_not0, dmax_iso_not0, handle, &
is1, is2, itmp, max_iso_not0, nset
INTEGER, DIMENSION(:), POINTER :: lmax, lmin
CALL timeset(routineN, handle)
CPASSERT(ASSOCIATED(harmonics))
CALL get_gto_basis_set(gto_basis_set=orb_basis, lmax=lmax, lmin=lmin, nset=nset)
! *** Assign indexes for the non null CG coefficients ***
max_iso_not0 = 0
dmax_iso_not0 = 0
damax_iso_not0 = 0
DO is1 = 1, nset
DO is2 = 1, nset
CALL get_none0_cg_list(harmonics%my_CG, &
lmin(is1), lmax(is1), lmin(is2), lmax(is2), &
max_s_harm, llmax, max_iso_not0=itmp)
max_iso_not0 = MAX(max_iso_not0, itmp)
CALL get_none0_cg_list(harmonics%my_CG_dxyz, &
lmin(is1), lmax(is1), lmin(is2), lmax(is2), &
max_s_harm, llmax, max_iso_not0=itmp)
dmax_iso_not0 = MAX(dmax_iso_not0, itmp)
CALL get_none0_cg_list(harmonics%my_CG_dxyz_asym, &
lmin(is1), lmax(is1), lmin(is2), lmax(is2), &
max_s_harm, llmax, max_iso_not0=itmp)
damax_iso_not0 = MAX(damax_iso_not0, itmp)
END DO ! is2
END DO ! is1
harmonics%max_iso_not0 = max_iso_not0
harmonics%dmax_iso_not0 = dmax_iso_not0
harmonics%damax_iso_not0 = damax_iso_not0
CALL timestop(handle)
END SUBROUTINE get_maxl_CG
! **************************************************************************************************
!> \brief ...
!> \param cgc ...
!> \param lmin1 ...
!> \param lmax1 ...
!> \param lmin2 ...
!> \param lmax2 ...
!> \param max_s_harm ...
!> \param llmax ...
!> \param list ...
!> \param n_list ...
!> \param max_iso_not0 ...
! **************************************************************************************************
SUBROUTINE get_none0_cg_list4(cgc, lmin1, lmax1, lmin2, lmax2, max_s_harm, llmax, &
list, n_list, max_iso_not0)
REAL(dp), DIMENSION(:, :, :, :), INTENT(IN) :: cgc
INTEGER, INTENT(IN) :: lmin1, lmax1, lmin2, lmax2, max_s_harm, &
llmax
INTEGER, DIMENSION(:, :, :), INTENT(OUT), OPTIONAL :: list
INTEGER, DIMENSION(:), INTENT(OUT), OPTIONAL :: n_list
INTEGER, INTENT(OUT) :: max_iso_not0
INTEGER :: iso, iso1, iso2, l1, l2, nlist
CPASSERT(nsoset(lmax1) .LE. SIZE(cgc, 2))
CPASSERT(nsoset(lmax2) .LE. SIZE(cgc, 3))
CPASSERT(max_s_harm .LE. SIZE(cgc, 4))
IF (PRESENT(n_list) .AND. PRESENT(list)) THEN
CPASSERT(max_s_harm .LE. SIZE(list, 3))
END IF
max_iso_not0 = 0
IF (PRESENT(n_list) .AND. PRESENT(list)) n_list = 0
DO iso = 1, max_s_harm
nlist = 0
DO l1 = lmin1, lmax1
DO iso1 = nsoset(l1 - 1) + 1, nsoset(l1)
DO l2 = lmin2, lmax2
IF (l1 + l2 > llmax) CYCLE
DO iso2 = nsoset(l2 - 1) + 1, nsoset(l2)
IF (ABS(cgc(1, iso1, iso2, iso)) + &
ABS(cgc(2, iso1, iso2, iso)) + &
ABS(cgc(3, iso1, iso2, iso)) > 1.E-8_dp) THEN
nlist = nlist + 1
IF (PRESENT(n_list) .AND. PRESENT(list)) THEN
list(1, nlist, iso) = iso1
list(2, nlist, iso) = iso2
END IF
max_iso_not0 = MAX(max_iso_not0, iso)
END IF
END DO
END DO
END DO
END DO
IF (PRESENT(n_list) .AND. PRESENT(list)) n_list(iso) = nlist
END DO
END SUBROUTINE get_none0_cg_list4
! **************************************************************************************************
!> \brief ...
!> \param cgc ...
!> \param lmin1 ...
!> \param lmax1 ...
!> \param lmin2 ...
!> \param lmax2 ...
!> \param max_s_harm ...
!> \param llmax ...
!> \param list ...
!> \param n_list ...
!> \param max_iso_not0 ...
! **************************************************************************************************
SUBROUTINE get_none0_cg_list3(cgc, lmin1, lmax1, lmin2, lmax2, max_s_harm, llmax, &
list, n_list, max_iso_not0)
REAL(dp), DIMENSION(:, :, :), INTENT(IN) :: cgc
INTEGER, INTENT(IN) :: lmin1, lmax1, lmin2, lmax2, max_s_harm, &
llmax
INTEGER, DIMENSION(:, :, :), INTENT(OUT), OPTIONAL :: list
INTEGER, DIMENSION(:), INTENT(OUT), OPTIONAL :: n_list
INTEGER, INTENT(OUT) :: max_iso_not0
INTEGER :: iso, iso1, iso2, l1, l2, nlist
CPASSERT(nsoset(lmax1) .LE. SIZE(cgc, 1))
CPASSERT(nsoset(lmax2) .LE. SIZE(cgc, 2))
CPASSERT(max_s_harm .LE. SIZE(cgc, 3))
IF (PRESENT(n_list) .AND. PRESENT(list)) THEN
CPASSERT(max_s_harm .LE. SIZE(list, 3))
END IF
max_iso_not0 = 0
IF (PRESENT(n_list) .AND. PRESENT(list)) n_list = 0
DO iso = 1, max_s_harm
nlist = 0
DO l1 = lmin1, lmax1
DO iso1 = nsoset(l1 - 1) + 1, nsoset(l1)
DO l2 = lmin2, lmax2
IF (l1 + l2 > llmax) CYCLE
DO iso2 = nsoset(l2 - 1) + 1, nsoset(l2)
IF (ABS(cgc(iso1, iso2, iso)) > 1.E-8_dp) THEN
nlist = nlist + 1
IF (PRESENT(n_list) .AND. PRESENT(list)) THEN
list(1, nlist, iso) = iso1
list(2, nlist, iso) = iso2
END IF
max_iso_not0 = MAX(max_iso_not0, iso)
END IF
END DO
END DO
END DO
END DO
IF (PRESENT(n_list) .AND. PRESENT(list)) n_list(iso) = nlist
END DO
END SUBROUTINE get_none0_cg_list3
END MODULE qs_harmonics_atom