-
Notifications
You must be signed in to change notification settings - Fork 1
/
qs_energy_window.F
326 lines (300 loc) · 18.4 KB
/
qs_energy_window.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Does all kind of post scf calculations for GPW/GAPW
!> \par History
!> Started as a copy from the relevant part of qs_scf
!> Start to adapt for k-points [07.2015, JGH]
!> \author Joost VandeVondele (10.2003)
! **************************************************************************************************
MODULE qs_energy_window
USE cp_blacs_env, ONLY: cp_blacs_env_type
USE cp_dbcsr_api, ONLY: &
dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_desymmetrize, dbcsr_frobenius_norm, &
dbcsr_get_info, dbcsr_multiply, dbcsr_p_type, dbcsr_release, dbcsr_type
USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
copy_fm_to_dbcsr
USE cp_fm_basic_linalg, ONLY: cp_fm_trace
USE cp_fm_diag, ONLY: choose_eigv_solver
USE cp_fm_struct, ONLY: cp_fm_struct_create,&
cp_fm_struct_release,&
cp_fm_struct_type
USE cp_fm_types, ONLY: cp_fm_create,&
cp_fm_release,&
cp_fm_to_fm,&
cp_fm_type
USE cp_log_handling, ONLY: cp_get_default_logger,&
cp_logger_get_default_io_unit,&
cp_logger_type
USE cp_output_handling, ONLY: cp_iter_string,&
cp_print_key_finished_output,&
cp_print_key_unit_nr
USE cp_realspace_grid_cube, ONLY: cp_pw_to_cube
USE input_section_types, ONLY: section_get_ivals,&
section_vals_get_subs_vals,&
section_vals_type,&
section_vals_val_get
USE iterate_matrix, ONLY: matrix_sqrt_Newton_Schulz
USE kinds, ONLY: dp
USE parallel_gemm_api, ONLY: parallel_gemm
USE particle_list_types, ONLY: particle_list_type
USE pw_env_types, ONLY: pw_env_get,&
pw_env_type
USE pw_methods, ONLY: pw_integrate_function
USE pw_pool_types, ONLY: pw_pool_type
USE pw_types, ONLY: pw_c1d_gs_type,&
pw_r3d_rs_type
USE qs_collocate_density, ONLY: calculate_rho_elec
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_ks_types, ONLY: qs_ks_env_type
USE qs_rho_types, ONLY: qs_rho_get,&
qs_rho_type
USE qs_subsys_types, ONLY: qs_subsys_get,&
qs_subsys_type
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
! Global parameters
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_energy_window'
PUBLIC :: energy_windows
! **************************************************************************************************
CONTAINS
! **************************************************************************************************
!> \brief ...
!> \param qs_env ...
! **************************************************************************************************
SUBROUTINE energy_windows(qs_env)
TYPE(qs_environment_type), POINTER :: qs_env
CHARACTER(len=*), PARAMETER :: routineN = 'energy_windows'
LOGICAL, PARAMETER :: debug = .FALSE.
REAL(KIND=dp), PARAMETER :: one = 1.0_dp, zero = 0.0_dp
CHARACTER(len=40) :: ext, title
INTEGER :: handle, i, lanzcos_max_iter, last, nao, &
nelectron_total, newton_schulz_order, &
next, nwindows, print_unit, unit_nr
INTEGER, DIMENSION(:), POINTER :: stride(:)
LOGICAL :: mpi_io, print_cube, restrict_range
REAL(KIND=dp) :: bin_width, density_ewindow_total, density_total, energy_range, fermi_level, &
filter_eps, frob_norm, lanzcos_threshold, lower_bound, occupation, upper_bound
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: eigenvalues, P_eigenvalues, &
window_eigenvalues
TYPE(cp_blacs_env_type), POINTER :: blacs_env
TYPE(cp_fm_struct_type), POINTER :: ao_ao_fmstruct, window_fm_struct
TYPE(cp_fm_type) :: eigenvectors, eigenvectors_nonorth, matrix_ks_fm, P_eigenvectors, &
P_window_fm, rho_ao_ortho_fm, S_minus_half_fm, tmp_fm, window_eigenvectors, window_fm
TYPE(cp_logger_type), POINTER :: logger
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_ks, matrix_s, rho_ao
TYPE(dbcsr_type) :: matrix_ks_nosym, S_half, S_minus_half, &
tmp
TYPE(dbcsr_type), POINTER :: rho_ao_ortho, window
TYPE(particle_list_type), POINTER :: particles
TYPE(pw_c1d_gs_type) :: rho_g
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type) :: rho_r
TYPE(qs_ks_env_type), POINTER :: ks_env
TYPE(qs_rho_type), POINTER :: rho
TYPE(qs_subsys_type), POINTER :: subsys
TYPE(section_vals_type), POINTER :: dft_section, input, ls_scf_section
CALL timeset(routineN, handle)
logger => cp_get_default_logger()
unit_nr = cp_logger_get_default_io_unit(logger)
CALL get_qs_env(qs_env=qs_env, blacs_env=blacs_env, matrix_ks=matrix_ks, pw_env=pw_env, rho=rho, &
input=input, nelectron_total=nelectron_total, subsys=subsys, ks_env=ks_env, matrix_s=matrix_s)
CALL qs_subsys_get(subsys, particles=particles)
CALL qs_rho_get(rho_struct=rho, rho_ao=rho_ao)
IF (SIZE(rho_ao) > 1) CALL cp_warn(__LOCATION__, &
"The printing of energy windows is currently only implemented for clsoe shell systems")
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
!reading the input
dft_section => section_vals_get_subs_vals(input, "DFT")
ls_scf_section => section_vals_get_subs_vals(input, "DFT%LS_SCF")
CALL section_vals_val_get(dft_section, "PRINT%ENERGY_WINDOWS%N_WINDOWS", i_val=nwindows)
CALL section_vals_val_get(dft_section, "PRINT%ENERGY_WINDOWS%PRINT_CUBES", l_val=print_cube)
CALL section_vals_val_get(dft_section, "PRINT%ENERGY_WINDOWS%RESTRICT_RANGE", l_val=restrict_range)
CALL section_vals_val_get(dft_section, "PRINT%ENERGY_WINDOWS%RANGE", r_val=energy_range)
NULLIFY (stride)
ALLOCATE (stride(3))
stride = section_get_ivals(dft_section, "PRINT%ENERGY_WINDOWS%STRIDE")
CALL section_vals_val_get(dft_section, "PRINT%ENERGY_WINDOWS%EPS_FILTER", r_val=filter_eps)
CALL section_vals_val_get(ls_scf_section, "EPS_LANCZOS", r_val=lanzcos_threshold)
CALL section_vals_val_get(ls_scf_section, "MAX_ITER_LANCZOS", i_val=lanzcos_max_iter)
CALL section_vals_val_get(ls_scf_section, "SIGN_SQRT_ORDER", i_val=newton_schulz_order)
!Initialize data
ALLOCATE (window, rho_ao_ortho)
CALL dbcsr_get_info(matrix=matrix_ks(1)%matrix, nfullrows_total=nao)
ALLOCATE (eigenvalues(nao))
CALL dbcsr_create(tmp, template=matrix_s(1)%matrix, matrix_type="N")
CALL dbcsr_create(S_minus_half, template=matrix_s(1)%matrix, matrix_type="N")
CALL dbcsr_create(S_half, template=matrix_s(1)%matrix, matrix_type="N")
CALL dbcsr_create(window, template=matrix_s(1)%matrix, matrix_type="N")
CALL dbcsr_create(rho_ao_ortho, template=matrix_s(1)%matrix, matrix_type="N")
CALL cp_fm_struct_create(fmstruct=ao_ao_fmstruct, context=blacs_env, nrow_global=nao, ncol_global=nao)
CALL cp_fm_create(P_window_fm, ao_ao_fmstruct)
CALL cp_fm_create(matrix_ks_fm, ao_ao_fmstruct)
CALL cp_fm_create(rho_ao_ortho_fm, ao_ao_fmstruct)
CALL cp_fm_create(S_minus_half_fm, ao_ao_fmstruct)
CALL cp_fm_create(eigenvectors, ao_ao_fmstruct)
CALL cp_fm_create(eigenvectors_nonorth, ao_ao_fmstruct)
CALL auxbas_pw_pool%create_pw(rho_r)
CALL auxbas_pw_pool%create_pw(rho_g)
!calculate S_minus_half
CALL matrix_sqrt_Newton_Schulz(S_half, S_minus_half, matrix_s(1)%matrix, filter_eps, &
newton_schulz_order, lanzcos_threshold, lanzcos_max_iter)
!get the full ks matrix
CALL dbcsr_desymmetrize(matrix_ks(1)%matrix, matrix_ks_nosym)
!switching to orthonormal basis
CALL dbcsr_multiply("N", "N", one, S_minus_half, matrix_ks_nosym, zero, tmp, filter_eps=filter_eps)
CALL dbcsr_multiply("N", "N", one, tmp, S_minus_half, zero, matrix_ks_nosym, filter_eps=filter_eps)
CALL copy_dbcsr_to_fm(matrix_ks_nosym, matrix_ks_fm)
CALL dbcsr_multiply("N", "N", one, S_half, rho_ao(1)%matrix, zero, tmp, filter_eps=filter_eps)
CALL dbcsr_multiply("N", "N", one, tmp, S_half, zero, rho_ao_ortho, filter_eps=filter_eps)
CALL copy_dbcsr_to_fm(rho_ao_ortho, rho_ao_ortho_fm)
!diagonalize the full ks matrix
CALL choose_eigv_solver(matrix_ks_fm, eigenvectors, eigenvalues)
fermi_level = eigenvalues((nelectron_total + MOD(nelectron_total, 2))/2)
IF (restrict_range) THEN
lower_bound = MAX(fermi_level - energy_range, eigenvalues(1))
upper_bound = MIN(fermi_level + energy_range, eigenvalues(SIZE(eigenvalues)))
ELSE
lower_bound = eigenvalues(1)
upper_bound = eigenvalues(SIZE(eigenvalues))
END IF
IF (unit_nr > 0) THEN
WRITE (unit_nr, *) " Creating energy windows. Fermi level: ", fermi_level
WRITE (unit_nr, *) " Printing Energy Levels from ", lower_bound, " to ", upper_bound
END IF
!Rotate the eigenvectors back out of the orthonormal basis
CALL copy_dbcsr_to_fm(S_minus_half, S_minus_half_fm)
!calculate the density caused by the mos in the energy window
CALL parallel_gemm("N", "N", nao, nao, nao, one, S_minus_half_fm, eigenvectors, zero, eigenvectors_nonorth)
IF (debug) THEN
!check difference to actual density
CALL cp_fm_struct_create(fmstruct=window_fm_struct, context=blacs_env, nrow_global=nao, &
ncol_global=nelectron_total/2)
CALL cp_fm_create(window_fm, window_fm_struct)
CALL cp_fm_to_fm(eigenvectors_nonorth, window_fm, nelectron_total/2, 1, 1)
CALL parallel_gemm("N", "T", nao, nao, nelectron_total/2, 2*one, window_fm, window_fm, zero, P_window_fm)
!ensure the correct sparsity
CALL copy_fm_to_dbcsr(P_window_fm, tmp)
CALL dbcsr_copy(window, matrix_ks(1)%matrix)
CALL dbcsr_copy(window, tmp, keep_sparsity=.TRUE.)
CALL calculate_rho_elec(matrix_p=window, &
rho=rho_r, &
rho_gspace=rho_g, &
ks_env=ks_env)
density_total = pw_integrate_function(rho_r)
IF (unit_nr > 0) WRITE (unit_nr, *) " Ground-state density: ", density_total
frob_norm = dbcsr_frobenius_norm(window)
IF (unit_nr > 0) WRITE (unit_nr, *) " Frob norm of calculated ground-state density matrix: ", frob_norm
CALL dbcsr_add(window, rho_ao(1)%matrix, one, -one)
frob_norm = dbcsr_frobenius_norm(rho_ao(1)%matrix)
IF (unit_nr > 0) WRITE (unit_nr, *) " Frob norm of current density matrix: ", frob_norm
frob_norm = dbcsr_frobenius_norm(window)
IF (unit_nr > 0) WRITE (unit_nr, *) " Difference between calculated ground-state density and current density: ", frob_norm
CALL cp_fm_struct_release(window_fm_struct)
CALL cp_fm_create(tmp_fm, ao_ao_fmstruct)
CALL cp_fm_to_fm(rho_ao_ortho_fm, tmp_fm)
CALL cp_fm_create(P_eigenvectors, ao_ao_fmstruct)
ALLOCATE (P_eigenvalues(nao))
CALL choose_eigv_solver(tmp_fm, P_eigenvectors, P_eigenvalues)
CALL cp_fm_create(window_eigenvectors, ao_ao_fmstruct)
ALLOCATE (window_eigenvalues(nao))
CALL cp_fm_to_fm(eigenvectors, window_fm, nelectron_total/2, 1, 1)
CALL parallel_gemm("N", "T", nao, nao, nelectron_total/2, 2*one, window_fm, window_fm, zero, P_window_fm)
CALL choose_eigv_solver(P_window_fm, window_eigenvectors, window_eigenvalues)
DO i = 1, nao
IF (unit_nr > 0) THEN
WRITE (unit_nr, *) i, "H:", eigenvalues(i), "P:", P_eigenvalues(nao - i + 1), "Pnew:", window_eigenvalues(nao - i + 1)
END IF
END DO
DEALLOCATE (P_eigenvalues)
CALL cp_fm_release(tmp_fm)
CALL cp_fm_release(P_eigenvectors)
DEALLOCATE (window_eigenvalues)
CALL cp_fm_release(window_eigenvectors)
CALL cp_fm_release(window_fm)
END IF
!create energy windows
bin_width = (upper_bound - lower_bound)/nwindows
next = 0
DO i = 1, nwindows
DO WHILE (eigenvalues(next + 1) < lower_bound)
next = next + 1
END DO
last = next
DO WHILE (eigenvalues(next + 1) < lower_bound + i*bin_width)
next = next + 1
IF (next == SIZE(eigenvalues)) EXIT
END DO
!calculate the occupation
!not sure how bad this is now load balanced due to using the same blacs_env
CALL cp_fm_struct_create(fmstruct=window_fm_struct, context=blacs_env, nrow_global=nao, ncol_global=next - last)
CALL cp_fm_create(window_fm, window_fm_struct)
!copy the mos in the energy window into a separate matrix
CALL cp_fm_to_fm(eigenvectors, window_fm, next - last, last + 1, 1)
CALL parallel_gemm("N", "T", nao, nao, next - last, one, window_fm, window_fm, zero, P_window_fm)
CALL cp_fm_trace(P_window_fm, rho_ao_ortho_fm, occupation)
IF (print_cube) THEN
CALL cp_fm_to_fm(eigenvectors_nonorth, window_fm, next - last, last + 1, 1)
!print the energy window to a cube file
!calculate the density caused by the mos in the energy window
CALL parallel_gemm("N", "T", nao, nao, next - last, one, window_fm, window_fm, zero, P_window_fm)
CALL copy_fm_to_dbcsr(P_window_fm, tmp)
!ensure the correct sparsity
CALL dbcsr_copy(window, matrix_ks(1)%matrix)
CALL dbcsr_copy(window, tmp, keep_sparsity=.TRUE.)
CALL calculate_rho_elec(matrix_p=window, &
rho=rho_r, &
rho_gspace=rho_g, &
ks_env=ks_env)
WRITE (ext, "(A14,I5.5,A)") "-ENERGY-WINDOW", i, TRIM(cp_iter_string(logger%iter_info))//".cube"
mpi_io = .TRUE.
print_unit = cp_print_key_unit_nr(logger, dft_section, "PRINT%ENERGY_WINDOWS", &
extension=ext, file_status="REPLACE", file_action="WRITE", &
log_filename=.FALSE., mpi_io=mpi_io)
WRITE (title, "(A14,I5)") "ENERGY WINDOW ", i
CALL cp_pw_to_cube(rho_r, print_unit, title, particles=particles, stride=stride, mpi_io=mpi_io)
CALL cp_print_key_finished_output(print_unit, logger, dft_section, &
"PRINT%ENERGY_WINDOWS", mpi_io=mpi_io)
density_ewindow_total = pw_integrate_function(rho_r)
IF (unit_nr > 0) WRITE (unit_nr, "(A,F16.10,A,I5,A,F20.14,A,F20.14)") " Energy Level: ", &
lower_bound + (i - 0.5_dp)*bin_width, " Number of states: ", next - last, " Occupation: ", &
occupation, " Grid Density ", density_ewindow_total
ELSE
IF (unit_nr > 0) THEN
WRITE (unit_nr, "(A,F16.10,A,I5,A,F20.14)") " Energy Level: ", lower_bound + (i - 0.5_dp)*bin_width, &
" Number of states: ", next - last, " Occupation: ", occupation
END IF
END IF
CALL cp_fm_release(window_fm)
CALL cp_fm_struct_release(window_fm_struct)
END DO
!clean up
CALL dbcsr_release(matrix_ks_nosym)
CALL dbcsr_release(tmp)
CALL dbcsr_release(window)
CALL dbcsr_release(S_minus_half)
CALL dbcsr_release(S_half)
CALL dbcsr_release(rho_ao_ortho)
DEALLOCATE (window, rho_ao_ortho)
CALL cp_fm_struct_release(ao_ao_fmstruct)
CALL cp_fm_release(matrix_ks_fm)
CALL cp_fm_release(rho_ao_ortho_fm)
CALL cp_fm_release(eigenvectors)
CALL cp_fm_release(P_window_fm)
CALL cp_fm_release(eigenvectors_nonorth)
CALL cp_fm_release(S_minus_half_fm)
CALL auxbas_pw_pool%give_back_pw(rho_r)
CALL auxbas_pw_pool%give_back_pw(rho_g)
DEALLOCATE (eigenvalues)
DEALLOCATE (STRIDE)
CALL timestop(handle)
END SUBROUTINE energy_windows
!**************************************************************************************************
END MODULE qs_energy_window