-
Notifications
You must be signed in to change notification settings - Fork 1
/
qs_energy_utils.F
436 lines (392 loc) · 20.8 KB
/
qs_energy_utils.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Utility subroutine for qs energy calculation
!> \par History
!> none
!> \author MK (29.10.2002)
! **************************************************************************************************
MODULE qs_energy_utils
USE atomic_kind_types, ONLY: atomic_kind_type
USE atprop_types, ONLY: atprop_array_add,&
atprop_array_init,&
atprop_type
USE cp_control_types, ONLY: dft_control_type
USE cp_control_utils, ONLY: read_ddapc_section
USE cp_dbcsr_api, ONLY: dbcsr_copy,&
dbcsr_create,&
dbcsr_p_type,&
dbcsr_release,&
dbcsr_set
USE et_coupling, ONLY: calc_et_coupling
USE et_coupling_proj, ONLY: calc_et_coupling_proj
USE hartree_local_methods, ONLY: Vh_1c_gg_integrals
USE hartree_local_types, ONLY: ecoul_1center_type
USE input_section_types, ONLY: section_vals_get,&
section_vals_get_subs_vals,&
section_vals_type
USE kinds, ONLY: dp
USE message_passing, ONLY: mp_para_env_type
USE mulliken, ONLY: atom_trace
USE post_scf_bandstructure_methods, ONLY: post_scf_bandstructure
USE pw_env_types, ONLY: pw_env_get,&
pw_env_type
USE pw_methods, ONLY: pw_axpy,&
pw_scale
USE pw_pool_types, ONLY: pw_pool_type
USE pw_types, ONLY: pw_r3d_rs_type
USE qs_core_hamiltonian, ONLY: core_matrices
USE qs_dispersion_types, ONLY: qs_dispersion_type
USE qs_energy_types, ONLY: qs_energy_type
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_integrate_potential, ONLY: integrate_v_core_rspace,&
integrate_v_rspace
USE qs_kind_types, ONLY: qs_kind_type
USE qs_ks_atom, ONLY: update_ks_atom
USE qs_ks_methods, ONLY: qs_ks_update_qs_env
USE qs_ks_types, ONLY: qs_ks_env_type
USE qs_linres_module, ONLY: linres_calculation_low
USE qs_local_rho_types, ONLY: local_rho_type
USE qs_rho0_ggrid, ONLY: integrate_vhg0_rspace
USE qs_rho_atom_types, ONLY: rho_atom_type,&
zero_rho_atom_integrals
USE qs_rho_types, ONLY: qs_rho_get,&
qs_rho_type
USE qs_scf, ONLY: scf
USE qs_tddfpt2_methods, ONLY: tddfpt
USE qs_vxc, ONLY: qs_xc_density
USE qs_vxc_atom, ONLY: calculate_vxc_atom
USE tip_scan_methods, ONLY: tip_scanning
USE xas_methods, ONLY: xas
USE xas_tdp_methods, ONLY: xas_tdp
USE xc_derivatives, ONLY: xc_functionals_get_needs
USE xc_rho_cflags_types, ONLY: xc_rho_cflags_type
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
! *** Global parameters ***
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_energy_utils'
PUBLIC :: qs_energies_properties
CONTAINS
! **************************************************************************************************
!> \brief Refactoring of qs_energies_scf. Moves computation of properties
!> into separate subroutine
!> \param qs_env ...
!> \param calc_forces ...
!> \par History
!> 05.2013 created [Florian Schiffmann]
! **************************************************************************************************
SUBROUTINE qs_energies_properties(qs_env, calc_forces)
TYPE(qs_environment_type), POINTER :: qs_env
LOGICAL, INTENT(IN) :: calc_forces
CHARACTER(len=*), PARAMETER :: routineN = 'qs_energies_properties'
INTEGER :: handle, natom
LOGICAL :: do_et, do_et_proj, &
do_post_scf_bandstructure, do_tip_scan
REAL(KIND=dp) :: ekts
TYPE(atprop_type), POINTER :: atprop
TYPE(dft_control_type), POINTER :: dft_control
TYPE(mp_para_env_type), POINTER :: para_env
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_r3d_rs_type), POINTER :: v_hartree_rspace
TYPE(qs_energy_type), POINTER :: energy
TYPE(section_vals_type), POINTER :: input, post_scf_bands_section, &
proj_section, rest_b_section, &
tip_scan_section
NULLIFY (atprop, energy, pw_env)
CALL timeset(routineN, handle)
! atomic energies using Mulliken partition
CALL get_qs_env(qs_env, &
dft_control=dft_control, &
input=input, &
atprop=atprop, &
energy=energy, &
v_hartree_rspace=v_hartree_rspace, &
para_env=para_env, &
pw_env=pw_env)
IF (atprop%energy) THEN
CALL qs_energies_mulliken(qs_env)
CALL get_qs_env(qs_env, natom=natom)
IF (.NOT. dft_control%qs_control%semi_empirical .AND. &
.NOT. dft_control%qs_control%xtb .AND. &
.NOT. dft_control%qs_control%dftb) THEN
! Nuclear charge correction
CALL integrate_v_core_rspace(v_hartree_rspace, qs_env)
IF (.NOT. ASSOCIATED(atprop%ateb)) THEN
CALL atprop_array_init(atprop%ateb, natom)
END IF
! Kohn-Sham Functional corrections
CALL ks_xc_correction(qs_env)
END IF
CALL atprop_array_add(atprop%atener, atprop%ateb)
CALL atprop_array_add(atprop%atener, atprop%ateself)
CALL atprop_array_add(atprop%atener, atprop%atexc)
CALL atprop_array_add(atprop%atener, atprop%atecoul)
CALL atprop_array_add(atprop%atener, atprop%atevdw)
CALL atprop_array_add(atprop%atener, atprop%ategcp)
CALL atprop_array_add(atprop%atener, atprop%atecc)
CALL atprop_array_add(atprop%atener, atprop%ate1c)
! entropic energy
ekts = energy%kts/REAL(natom, KIND=dp)/REAL(para_env%num_pe, KIND=dp)
atprop%atener(:) = atprop%atener(:) + ekts
END IF
! ET coupling - projection-operator approach
NULLIFY (proj_section)
proj_section => &
section_vals_get_subs_vals(input, "PROPERTIES%ET_COUPLING%PROJECTION")
CALL section_vals_get(proj_section, explicit=do_et_proj)
IF (do_et_proj) THEN
CALL calc_et_coupling_proj(qs_env)
END IF
! ********** Calculate the electron transfer coupling elements********
do_et = .FALSE.
do_et = dft_control%qs_control%et_coupling_calc
IF (do_et) THEN
qs_env%et_coupling%energy = energy%total
qs_env%et_coupling%keep_matrix = .TRUE.
qs_env%et_coupling%first_run = .TRUE.
CALL qs_ks_update_qs_env(qs_env, calculate_forces=.FALSE., just_energy=.TRUE.)
qs_env%et_coupling%first_run = .FALSE.
IF (dft_control%qs_control%ddapc_restraint) THEN
rest_b_section => section_vals_get_subs_vals(input, "PROPERTIES%ET_COUPLING%DDAPC_RESTRAINT_B")
CALL read_ddapc_section(qs_control=dft_control%qs_control, &
ddapc_restraint_section=rest_b_section)
END IF
CALL scf(qs_env=qs_env)
qs_env%et_coupling%keep_matrix = .TRUE.
CALL qs_ks_update_qs_env(qs_env, calculate_forces=.FALSE., just_energy=.TRUE.)
CALL calc_et_coupling(qs_env)
END IF
!Properties
IF (dft_control%do_xas_calculation) THEN
CALL xas(qs_env, dft_control)
END IF
IF (dft_control%do_xas_tdp_calculation) THEN
CALL xas_tdp(qs_env)
END IF
! Compute Linear Response properties as post-scf
IF (.NOT. qs_env%linres_run) THEN
CALL linres_calculation_low(qs_env)
END IF
IF (dft_control%tddfpt2_control%enabled) THEN
CALL tddfpt(qs_env, calc_forces)
END IF
! post-SCF bandstructure calculation from higher level methods
NULLIFY (post_scf_bands_section)
post_scf_bands_section => section_vals_get_subs_vals(qs_env%input, "PROPERTIES%BANDSTRUCTURE")
CALL section_vals_get(post_scf_bands_section, explicit=do_post_scf_bandstructure)
IF (do_post_scf_bandstructure) THEN
CALL post_scf_bandstructure(qs_env, post_scf_bands_section)
END IF
! tip scan
NULLIFY (tip_scan_section)
tip_scan_section => section_vals_get_subs_vals(input, "PROPERTIES%TIP_SCAN")
CALL section_vals_get(tip_scan_section, explicit=do_tip_scan)
IF (do_tip_scan) THEN
CALL tip_scanning(qs_env, tip_scan_section)
END IF
CALL timestop(handle)
END SUBROUTINE qs_energies_properties
! **************************************************************************************************
!> \brief Use a simple Mulliken-like energy decomposition
!> \param qs_env ...
!> \date 07.2011
!> \author JHU
!> \version 1.0
! **************************************************************************************************
SUBROUTINE qs_energies_mulliken(qs_env)
TYPE(qs_environment_type), POINTER :: qs_env
INTEGER :: ispin, natom, nspin
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: atcore
TYPE(atprop_type), POINTER :: atprop
TYPE(dbcsr_p_type), ALLOCATABLE, DIMENSION(:), &
TARGET :: core_mat
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_h, matrix_ks, rho_ao
TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: math, matp
TYPE(dft_control_type), POINTER :: dft_control
TYPE(qs_rho_type), POINTER :: rho
CALL get_qs_env(qs_env=qs_env, atprop=atprop)
IF (atprop%energy) THEN
CALL get_qs_env(qs_env=qs_env, matrix_ks=matrix_ks, matrix_h=matrix_h, rho=rho)
CALL qs_rho_get(rho, rho_ao=rho_ao)
! E = 0.5*Tr(H*P+F*P)
atprop%atener = 0._dp
nspin = SIZE(rho_ao)
DO ispin = 1, nspin
CALL atom_trace(matrix_h(1)%matrix, rho_ao(ispin)%matrix, &
0.5_dp, atprop%atener)
CALL atom_trace(matrix_ks(ispin)%matrix, rho_ao(ispin)%matrix, &
0.5_dp, atprop%atener)
END DO
!
CALL get_qs_env(qs_env=qs_env, dft_control=dft_control)
IF (.NOT. dft_control%qs_control%semi_empirical .AND. &
.NOT. dft_control%qs_control%xtb .AND. &
.NOT. dft_control%qs_control%dftb) THEN
CALL get_qs_env(qs_env=qs_env, natom=natom)
ALLOCATE (atcore(natom))
atcore = 0.0_dp
ALLOCATE (core_mat(1))
ALLOCATE (core_mat(1)%matrix)
CALL dbcsr_create(core_mat(1)%matrix, template=matrix_h(1)%matrix)
CALL dbcsr_copy(core_mat(1)%matrix, matrix_h(1)%matrix)
CALL dbcsr_set(core_mat(1)%matrix, 0.0_dp)
math(1:1, 1:1) => core_mat(1:1)
matp(1:nspin, 1:1) => rho_ao(1:nspin)
CALL core_matrices(qs_env, math, matp, .FALSE., 0, atcore=atcore)
atprop%atener = atprop%atener + 0.5_dp*atcore
DO ispin = 1, nspin
CALL atom_trace(core_mat(1)%matrix, rho_ao(ispin)%matrix, &
-0.5_dp, atprop%atener)
END DO
DEALLOCATE (atcore)
CALL dbcsr_release(core_mat(1)%matrix)
DEALLOCATE (core_mat(1)%matrix)
DEALLOCATE (core_mat)
END IF
END IF
END SUBROUTINE qs_energies_mulliken
! **************************************************************************************************
!> \brief ...
!> \param qs_env ...
! **************************************************************************************************
SUBROUTINE ks_xc_correction(qs_env)
TYPE(qs_environment_type), POINTER :: qs_env
CHARACTER(len=*), PARAMETER :: routineN = 'ks_xc_correction'
INTEGER :: handle, iatom, ispin, natom, nspins
LOGICAL :: gapw, gapw_xc
REAL(KIND=dp) :: eh1, exc1
TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
TYPE(atprop_type), POINTER :: atprop
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s, rho_ao, xcmat
TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_p
TYPE(dft_control_type), POINTER :: dft_control
TYPE(ecoul_1center_type), DIMENSION(:), POINTER :: ecoul_1c
TYPE(local_rho_type), POINTER :: local_rho_set
TYPE(mp_para_env_type), POINTER :: para_env
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type) :: xc_den
TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:) :: vtau, vxc
TYPE(pw_r3d_rs_type), POINTER :: v_hartree_rspace
TYPE(qs_dispersion_type), POINTER :: dispersion_env
TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
TYPE(qs_ks_env_type), POINTER :: ks_env
TYPE(qs_rho_type), POINTER :: rho_struct
TYPE(rho_atom_type), DIMENSION(:), POINTER :: rho_atom_set
TYPE(section_vals_type), POINTER :: xc_fun_section, xc_section
TYPE(xc_rho_cflags_type) :: needs
CALL timeset(routineN, handle)
CALL get_qs_env(qs_env, ks_env=ks_env, dft_control=dft_control, pw_env=pw_env, atprop=atprop)
IF (atprop%energy) THEN
nspins = dft_control%nspins
xc_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC")
xc_fun_section => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
needs = xc_functionals_get_needs(xc_fun_section, (nspins == 2), .TRUE.)
gapw = dft_control%qs_control%gapw
gapw_xc = dft_control%qs_control%gapw_xc
! Nuclear charge correction
CALL get_qs_env(qs_env, v_hartree_rspace=v_hartree_rspace)
IF (gapw .OR. gapw_xc) THEN
CALL get_qs_env(qs_env=qs_env, local_rho_set=local_rho_set, &
rho_atom_set=rho_atom_set, ecoul_1c=ecoul_1c, &
natom=natom, para_env=para_env)
CALL zero_rho_atom_integrals(rho_atom_set)
CALL calculate_vxc_atom(qs_env, .FALSE., exc1)
IF (gapw) THEN
CALL Vh_1c_gg_integrals(qs_env, eh1, ecoul_1c, local_rho_set, para_env, tddft=.FALSE.)
CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set)
CALL integrate_vhg0_rspace(qs_env, v_hartree_rspace, para_env, calculate_forces=.FALSE., &
local_rho_set=local_rho_set, atener=atprop%ateb)
END IF
END IF
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
CALL auxbas_pw_pool%create_pw(xc_den)
ALLOCATE (vxc(nspins))
DO ispin = 1, nspins
CALL auxbas_pw_pool%create_pw(vxc(ispin))
END DO
IF (needs%tau .OR. needs%tau_spin) THEN
ALLOCATE (vtau(nspins))
DO ispin = 1, nspins
CALL auxbas_pw_pool%create_pw(vtau(ispin))
END DO
END IF
IF (gapw_xc) THEN
CALL get_qs_env(qs_env, rho_xc=rho_struct, dispersion_env=dispersion_env)
ELSE
CALL get_qs_env(qs_env, rho=rho_struct, dispersion_env=dispersion_env)
END IF
IF (needs%tau .OR. needs%tau_spin) THEN
CALL qs_xc_density(ks_env, rho_struct, xc_section, dispersion_env=dispersion_env, &
xc_den=xc_den, vxc=vxc, vtau=vtau)
ELSE
CALL qs_xc_density(ks_env, rho_struct, xc_section, dispersion_env=dispersion_env, &
xc_den=xc_den, vxc=vxc)
END IF
CALL get_qs_env(qs_env, rho=rho_struct)
CALL qs_rho_get(rho_struct, rho_ao=rho_ao)
CALL get_qs_env(qs_env, natom=natom, matrix_s=matrix_s)
CALL atprop_array_init(atprop%atexc, natom)
ALLOCATE (xcmat(nspins))
DO ispin = 1, nspins
ALLOCATE (xcmat(ispin)%matrix)
CALL dbcsr_create(xcmat(ispin)%matrix, template=matrix_s(1)%matrix)
CALL dbcsr_copy(xcmat(ispin)%matrix, matrix_s(1)%matrix)
CALL dbcsr_set(xcmat(ispin)%matrix, 0.0_dp)
CALL pw_scale(vxc(ispin), -0.5_dp)
CALL pw_axpy(xc_den, vxc(ispin))
CALL pw_scale(vxc(ispin), vxc(ispin)%pw_grid%dvol)
CALL integrate_v_rspace(qs_env=qs_env, v_rspace=vxc(ispin), hmat=xcmat(ispin), &
calculate_forces=.FALSE., gapw=(gapw .OR. gapw_xc))
IF (needs%tau .OR. needs%tau_spin) THEN
CALL pw_scale(vtau(ispin), -0.5_dp*vtau(ispin)%pw_grid%dvol)
CALL integrate_v_rspace(qs_env=qs_env, v_rspace=vtau(ispin), &
hmat=xcmat(ispin), calculate_forces=.FALSE., &
gapw=(gapw .OR. gapw_xc), compute_tau=.TRUE.)
END IF
END DO
IF (gapw .OR. gapw_xc) THEN
! remove one-center potential matrix part
CALL qs_rho_get(rho_struct, rho_ao_kp=matrix_p)
CALL update_ks_atom(qs_env, xcmat, matrix_p, forces=.FALSE., kscale=-0.5_dp)
CALL get_qs_env(qs_env=qs_env, rho_atom_set=rho_atom_set)
CALL atprop_array_init(atprop%ate1c, natom)
atprop%ate1c = 0.0_dp
DO iatom = 1, natom
atprop%ate1c(iatom) = atprop%ate1c(iatom) + &
rho_atom_set(iatom)%exc_h - rho_atom_set(iatom)%exc_s
END DO
IF (gapw) THEN
CALL get_qs_env(qs_env=qs_env, ecoul_1c=ecoul_1c)
DO iatom = 1, natom
atprop%ate1c(iatom) = atprop%ate1c(iatom) + &
ecoul_1c(iatom)%ecoul_1_h - ecoul_1c(iatom)%ecoul_1_s + &
ecoul_1c(iatom)%ecoul_1_z - ecoul_1c(iatom)%ecoul_1_0
END DO
END IF
END IF
DO ispin = 1, nspins
CALL atom_trace(xcmat(ispin)%matrix, rho_ao(ispin)%matrix, 1.0_dp, atprop%atexc)
CALL dbcsr_release(xcmat(ispin)%matrix)
DEALLOCATE (xcmat(ispin)%matrix)
END DO
DEALLOCATE (xcmat)
CALL auxbas_pw_pool%give_back_pw(xc_den)
DO ispin = 1, nspins
CALL auxbas_pw_pool%give_back_pw(vxc(ispin))
END DO
IF (needs%tau .OR. needs%tau_spin) THEN
DO ispin = 1, nspins
CALL auxbas_pw_pool%give_back_pw(vtau(ispin))
END DO
END IF
END IF
CALL timestop(handle)
END SUBROUTINE ks_xc_correction
END MODULE qs_energy_utils