-
Notifications
You must be signed in to change notification settings - Fork 1
/
qs_dcdr_ao.F
827 lines (693 loc) · 38.3 KB
/
qs_dcdr_ao.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Calculate the derivatives of the MO coefficients wrt nuclear coordinates
!> \author Sandra Luber, Edward Ditler
! **************************************************************************************************
MODULE qs_dcdr_ao
USE atomic_kind_types, ONLY: atomic_kind_type
USE basis_set_types, ONLY: gto_basis_set_p_type,&
gto_basis_set_type
USE core_ae, ONLY: build_core_ae
USE core_ppl, ONLY: build_core_ppl
USE core_ppnl, ONLY: build_core_ppnl
USE cp_control_types, ONLY: dft_control_type
USE cp_dbcsr_api, ONLY: dbcsr_copy,&
dbcsr_get_block_p,&
dbcsr_p_type,&
dbcsr_set,&
dbcsr_type
USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
copy_fm_to_dbcsr
USE cp_fm_types, ONLY: cp_fm_create,&
cp_fm_release,&
cp_fm_type
USE cp_log_handling, ONLY: cp_get_default_logger,&
cp_logger_type
USE input_constants, ONLY: do_ppl_analytic
USE input_section_types, ONLY: section_vals_get_subs_vals,&
section_vals_type
USE kinds, ONLY: default_string_length,&
dp
USE orbital_pointers, ONLY: ncoset
USE parallel_gemm_api, ONLY: parallel_gemm
USE particle_types, ONLY: particle_type
USE pw_env_types, ONLY: pw_env_get,&
pw_env_type
USE pw_methods, ONLY: pw_axpy,&
pw_copy,&
pw_scale,&
pw_transfer,&
pw_zero
USE pw_poisson_methods, ONLY: pw_poisson_solve
USE pw_poisson_types, ONLY: pw_poisson_type
USE pw_pool_types, ONLY: pw_pool_p_type,&
pw_pool_type
USE pw_types, ONLY: pw_c1d_gs_type,&
pw_r3d_rs_type
USE qs_collocate_density, ONLY: calculate_drho_core,&
calculate_drho_elec_dR
USE qs_energy_types, ONLY: qs_energy_type
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_force_types, ONLY: qs_force_type
USE qs_integral_utils, ONLY: basis_set_list_setup,&
get_memory_usage
USE qs_integrate_potential, ONLY: integrate_v_dbasis,&
integrate_v_rspace
USE qs_kind_types, ONLY: qs_kind_type
USE qs_ks_types, ONLY: get_ks_env,&
qs_ks_env_type
USE qs_linres_types, ONLY: dcdr_env_type
USE qs_neighbor_list_types, ONLY: get_iterator_info,&
get_neighbor_list_set_p,&
neighbor_list_iterate,&
neighbor_list_iterator_create,&
neighbor_list_iterator_p_type,&
neighbor_list_iterator_release,&
neighbor_list_set_p_type
USE qs_rho_methods, ONLY: qs_rho_rebuild,&
qs_rho_update_rho
USE qs_rho_types, ONLY: qs_rho_create,&
qs_rho_get,&
qs_rho_release,&
qs_rho_type
USE qs_vxc, ONLY: qs_vxc_create
USE virial_types, ONLY: virial_type
USE xc, ONLY: xc_calc_2nd_deriv,&
xc_prep_2nd_deriv
USE xc_derivative_set_types, ONLY: xc_derivative_set_type,&
xc_dset_release
USE xc_rho_set_types, ONLY: xc_rho_set_release,&
xc_rho_set_type
!$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num, omp_get_num_threads
!$ USE OMP_LIB, ONLY: omp_lock_kind, &
!$ omp_init_lock, omp_set_lock, &
!$ omp_unset_lock, omp_destroy_lock
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
PUBLIC :: core_dR, d_vhxc_dR, d_core_charge_density_dR, apply_op_constant_term
PUBLIC :: vhxc_R_perturbed_basis_functions
PUBLIC :: hr_mult_by_delta_1d
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_dcdr_ao'
CONTAINS
! **************************************************************************************************
!> \brief Build the perturbed density matrix correction depending on the overlap derivative
!> \param qs_env ...
!> \param dcdr_env ...
!> \param overlap1 Overlap derivative in AO basis
!> \author Edward Ditler
! **************************************************************************************************
SUBROUTINE apply_op_constant_term(qs_env, dcdr_env, overlap1)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(dcdr_env_type) :: dcdr_env
TYPE(dbcsr_p_type), OPTIONAL :: overlap1
CHARACTER(len=*), PARAMETER :: routineN = 'apply_op_constant_term'
INTEGER :: handle, ispin
REAL(KIND=dp) :: energy_hartree
TYPE(cp_fm_type) :: rho_ao_fm, rho_ao_s1, rho_ao_s1_rho_ao, &
s1_ao
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: rho1_ao, rho_ao
TYPE(pw_c1d_gs_type) :: rho1_tot_gspace, v_hartree_gspace
TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER :: rho1_g, rho1_g_pw
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_poisson_type), POINTER :: poisson_env
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type) :: v_hartree_rspace
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: rho1_r, rho_r, tau1_r, v_rspace_new, &
v_xc, v_xc_tau
TYPE(qs_rho_type), POINTER :: perturbed_density, rho
TYPE(section_vals_type), POINTER :: input, xc_section
TYPE(xc_derivative_set_type) :: deriv_set
TYPE(xc_rho_set_type) :: rho_set
! Build the perturbed density matrix correction depending on the overlap derivative
! P1 = C0 C1 + C1 C0
! - C0_(mu j) S1_(jk) C0_(k nu)
! This routine is adapted from apply_op_2_dft. There, build_dm_response builds
! C0 * dCR + dCR * C0.
! build_dm_response is computing $-1 * (C^0 C^1 + C^1 C^0)$ and later on in the
! integration the factor 2 is applied to account for the occupancy.
! The sign is negative because the kernel is on the RHS of the Sternheimer equation.
!
! The correction factor in this routine needs to have
! the opposite sign mathematically as (C0 C1 + C1 C0)
! so the same sign in the code because of the $-1$ in dCR
! so the opposite sign in the code because we are on the LHS of the Sternheimer equation.
!
! This term must not go into the kernel applied by the linear response solver, because
! for the (P)CG algorithm, all constant terms have to be on one side of the equations
! and all solution dependent terms must be on the other side.
CALL timeset(routineN, handle)
NULLIFY (auxbas_pw_pool, pw_env, rho1_r, rho1_g_pw, &
v_xc, poisson_env, input, rho, rho1_g, v_xc_tau)
CALL cp_fm_create(rho_ao_fm, dcdr_env%aoao_fm_struct)
CALL cp_fm_create(rho_ao_s1, dcdr_env%aoao_fm_struct)
CALL cp_fm_create(rho_ao_s1_rho_ao, dcdr_env%aoao_fm_struct)
CALL cp_fm_create(s1_ao, dcdr_env%aoao_fm_struct)
IF (PRESENT(overlap1)) THEN
CALL copy_dbcsr_to_fm(overlap1%matrix, s1_ao)
ELSE
CALL copy_dbcsr_to_fm(dcdr_env%matrix_s1(dcdr_env%beta + 1)%matrix, s1_ao)
END IF
DO ispin = 1, dcdr_env%nspins
CALL dbcsr_set(dcdr_env%perturbed_dm_correction(ispin)%matrix, 0._dp)
CALL dbcsr_set(dcdr_env%matrix_apply_op_constant(ispin)%matrix, 0.0_dp)
CALL parallel_gemm('N', 'T', dcdr_env%nao, dcdr_env%nao, dcdr_env%nmo(ispin), &
1.0_dp, dcdr_env%mo_coeff(ispin), dcdr_env%mo_coeff(ispin), &
0.0_dp, rho_ao_fm)
CALL parallel_gemm('N', 'N', dcdr_env%nao, dcdr_env%nao, dcdr_env%nao, &
1.0_dp, rho_ao_fm, s1_ao, &
0.0_dp, rho_ao_s1)
CALL parallel_gemm('N', 'N', dcdr_env%nao, dcdr_env%nao, dcdr_env%nao, &
-1._dp, rho_ao_s1, rho_ao_fm, & ! this is the sign mentioned above.
0.0_dp, rho_ao_s1_rho_ao)
CALL copy_fm_to_dbcsr(rho_ao_s1_rho_ao, dcdr_env%perturbed_dm_correction(ispin)%matrix)
END DO
CALL cp_fm_release(rho_ao_fm)
CALL cp_fm_release(rho_ao_s1)
CALL cp_fm_release(rho_ao_s1_rho_ao)
CALL cp_fm_release(s1_ao)
! Done building the density matrix correction
! Build the density struct from the environment
NULLIFY (perturbed_density)
ALLOCATE (perturbed_density)
CALL qs_rho_create(perturbed_density)
CALL qs_rho_rebuild(perturbed_density, qs_env=qs_env)
! ... set the density matrix to be the perturbed density matrix
CALL qs_rho_get(perturbed_density, rho_ao=rho1_ao)
DO ispin = 1, dcdr_env%nspins
CALL dbcsr_copy(rho1_ao(ispin)%matrix, dcdr_env%perturbed_dm_correction(ispin)%matrix)
END DO
! ... updates rho_r and rho_g to the rho%rho_ao.
CALL qs_rho_update_rho(rho_struct=perturbed_density, &
qs_env=qs_env)
! Also update the qs_env%rho
CALL get_qs_env(qs_env, rho=rho)
CALL qs_rho_update_rho(rho, qs_env=qs_env)
CALL qs_rho_get(rho, rho_ao=rho_ao, rho_r=rho_r)
energy_hartree = 0.0_dp
CALL get_qs_env(qs_env=qs_env, &
pw_env=pw_env, &
input=input)
! Create the temporary grids
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
poisson_env=poisson_env)
! Allocate deriv_set and rho_set
xc_section => section_vals_get_subs_vals(input, "DFT%XC")
CALL xc_prep_2nd_deriv(deriv_set, rho_set, &
rho_r, auxbas_pw_pool, &
xc_section=xc_section)
! Done with deriv_set and rho_set
ALLOCATE (v_rspace_new(dcdr_env%nspins))
CALL auxbas_pw_pool%create_pw(v_hartree_gspace)
CALL auxbas_pw_pool%create_pw(v_hartree_rspace)
! Calculate the Hartree potential on the total density
CALL auxbas_pw_pool%create_pw(rho1_tot_gspace)
CALL qs_rho_get(perturbed_density, rho_g=rho1_g, rho_r=rho1_r, tau_r=tau1_r)
CALL pw_copy(rho1_g(1), rho1_tot_gspace)
DO ispin = 2, dcdr_env%nspins
CALL pw_axpy(rho1_g(ispin), rho1_tot_gspace)
END DO
CALL pw_poisson_solve(poisson_env, rho1_tot_gspace, &
energy_hartree, &
v_hartree_gspace)
CALL pw_transfer(v_hartree_gspace, v_hartree_rspace)
CALL auxbas_pw_pool%give_back_pw(rho1_tot_gspace)
! Calculate the second derivative of the exchange-correlation potential
CALL xc_calc_2nd_deriv(v_xc, v_xc_tau, deriv_set, rho_set, &
rho1_r, rho1_g_pw, tau1_r, auxbas_pw_pool, xc_section, gapw=.FALSE.)
DO ispin = 1, dcdr_env%nspins
v_rspace_new(ispin) = v_xc(ispin)
END DO
DEALLOCATE (v_xc)
! Done calculating the potentials
!-------------------------------!
! Add both hartree and xc terms !
!-------------------------------!
CALL pw_scale(v_hartree_rspace, v_hartree_rspace%pw_grid%dvol)
DO ispin = 1, dcdr_env%nspins
CALL pw_scale(v_rspace_new(ispin), v_rspace_new(ispin)%pw_grid%dvol)
END DO
DO ispin = 1, dcdr_env%nspins
CALL dbcsr_set(dcdr_env%matrix_apply_op_constant(ispin)%matrix, 0.0_dp)
CALL pw_axpy(v_hartree_rspace, v_rspace_new(ispin))
IF (dcdr_env%nspins == 1) THEN
CALL pw_scale(v_rspace_new(1), 2.0_dp)
END IF
CALL integrate_v_rspace(v_rspace=v_rspace_new(ispin), &
hmat=dcdr_env%matrix_apply_op_constant(ispin), &
qs_env=qs_env, &
calculate_forces=.FALSE.)
END DO
CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace)
CALL auxbas_pw_pool%give_back_pw(v_hartree_rspace)
DO ispin = 1, dcdr_env%nspins
CALL auxbas_pw_pool%give_back_pw(v_rspace_new(ispin))
END DO
DEALLOCATE (v_rspace_new)
IF (ASSOCIATED(v_xc_tau)) THEN
CALL pw_scale(v_xc_tau(1), 2._dp*v_xc_tau(1)%pw_grid%dvol)
CALL integrate_v_rspace(v_rspace=v_xc_tau(1), &
hmat=dcdr_env%matrix_apply_op_constant(1), &
qs_env=qs_env, &
compute_tau=.TRUE., &
calculate_forces=.FALSE.)
CALL auxbas_pw_pool%give_back_pw(v_xc_tau(1))
DEALLOCATE (v_xc_tau)
END IF
CALL qs_rho_release(perturbed_density)
DEALLOCATE (perturbed_density)
CALL xc_rho_set_release(rho_set, auxbas_pw_pool)
CALL xc_dset_release(deriv_set)
CALL timestop(handle)
END SUBROUTINE apply_op_constant_term
! **************************************************************************************************
!> \brief Calculate the derivative of the Hartree term due to the core charge density
!> \param qs_env ...
!> \param dcdr_env ...
!> \author Edward Ditler
! **************************************************************************************************
SUBROUTINE d_core_charge_density_dR(qs_env, dcdr_env)
! drho_core contribution
! sum over all directions
! output in ao x ao
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(dcdr_env_type) :: dcdr_env
CHARACTER(len=*), PARAMETER :: routineN = 'd_core_charge_density_dR'
INTEGER :: beta, handle
TYPE(cp_logger_type), POINTER :: logger
TYPE(dft_control_type), POINTER :: dft_control
TYPE(pw_c1d_gs_type) :: drho_g, v_hartree_gspace
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_poisson_type), POINTER :: poisson_env
TYPE(pw_pool_p_type), DIMENSION(:), POINTER :: pw_pools
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type) :: v_hartree_rspace
TYPE(qs_rho_type), POINTER :: rho
CALL timeset(routineN, handle)
logger => cp_get_default_logger()
NULLIFY (pw_env, auxbas_pw_pool, pw_pools, poisson_env, dft_control, &
rho)
CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, rho=rho, &
dft_control=dft_control)
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, poisson_env=poisson_env, &
pw_pools=pw_pools)
! Create the Hartree potential grids in real and reciprocal space.
CALL auxbas_pw_pool%create_pw(v_hartree_gspace)
CALL auxbas_pw_pool%create_pw(v_hartree_rspace)
! Create the grid for the derivative of the core potential
CALL auxbas_pw_pool%create_pw(drho_g)
DO beta = 1, 3
CALL pw_zero(v_hartree_gspace)
CALL pw_zero(v_hartree_rspace)
CALL pw_zero(drho_g)
! Calculate the Hartree potential on the perturbed density and Poisson solve it
CALL calculate_drho_core(drho_core=drho_g, qs_env=qs_env, &
beta=beta, lambda=dcdr_env%lambda)
CALL pw_poisson_solve(poisson_env, drho_g, &
vhartree=v_hartree_gspace)
CALL pw_transfer(v_hartree_gspace, v_hartree_rspace)
CALL pw_scale(v_hartree_rspace, v_hartree_rspace%pw_grid%dvol)
! Calculate the integrals
CALL integrate_v_rspace(v_rspace=v_hartree_rspace, &
hmat=dcdr_env%matrix_core_charge_1(beta), &
qs_env=qs_env, &
calculate_forces=.FALSE.)
END DO
CALL auxbas_pw_pool%give_back_pw(drho_g)
CALL auxbas_pw_pool%give_back_pw(v_hartree_rspace)
CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace)
CALL timestop(handle)
END SUBROUTINE d_core_charge_density_dR
! **************************************************************************************************
!> \brief Core Hamiltonian contributions to the operator (the pseudopotentials)
!> \param qs_env ...
!> \param dcdr_env ..
!> \author Edward Ditler
! **************************************************************************************************
SUBROUTINE core_dR(qs_env, dcdr_env)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(dcdr_env_type) :: dcdr_env
CHARACTER(LEN=*), PARAMETER :: routineN = 'core_dR'
CHARACTER(LEN=default_string_length) :: my_basis_type
INTEGER :: handle, nder
INTEGER, DIMENSION(:, :, :), POINTER :: cell_to_index
LOGICAL :: calculate_forces, failure, ppl_present, &
ppnl_present, use_virial
REAL(KIND=dp) :: eps_ppnl
REAL(KIND=dp), DIMENSION(:, :), POINTER :: deltaR
TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: rho_ao
TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_hc_pass, matrix_p_pass, &
matrix_ppnl_1_pass
TYPE(dft_control_type), POINTER :: dft_control
TYPE(neighbor_list_set_p_type), DIMENSION(:), &
POINTER :: sab_orb, sac_ae, sac_ppl, sap_ppnl
TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
TYPE(qs_force_type), DIMENSION(:), POINTER :: force
TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
TYPE(qs_ks_env_type), POINTER :: ks_env
TYPE(qs_rho_type), POINTER :: rho
TYPE(virial_type), POINTER :: virial
CALL timeset(routineN, handle)
failure = .FALSE.
NULLIFY (atomic_kind_set, qs_kind_set, ks_env, dft_control, particle_set, &
sab_orb, sac_ae, sac_ppl, sap_ppnl, virial, rho, rho_ao)
CALL get_qs_env(qs_env=qs_env, &
atomic_kind_set=atomic_kind_set, &
qs_kind_set=qs_kind_set, &
ks_env=ks_env, &
dft_control=dft_control, &
particle_set=particle_set, &
sab_orb=sab_orb, &
sac_ae=sac_ae, &
sac_ppl=sac_ppl, &
sap_ppnl=sap_ppnl, &
virial=virial)
CALL get_ks_env(ks_env=ks_env, rho=rho)
CALL qs_rho_get(rho, rho_ao=rho_ao)
deltaR => dcdr_env%delta_basis_function
nder = 1
calculate_forces = .FALSE.
my_basis_type = "ORB"
! ECP/AE contribution to the core hamiltonian
IF (ASSOCIATED(sac_ae)) THEN
CPABORT("ECP/AE functionality in qs_dcdr_ao missing")
! Missing feature: deltaR weighting factors of the derivatives wrt. nuclear positions
matrix_hc_pass(1:3, 1:1) => dcdr_env%matrix_hc(1:3)
matrix_p_pass(1:1, 1:1) => rho_ao(1:1)
CALL build_core_ae(matrix_h=matrix_hc_pass, matrix_p=matrix_p_pass, &
force=force, virial=virial, calculate_forces=calculate_forces, &
use_virial=use_virial, nder=nder, qs_kind_set=qs_kind_set, &
atomic_kind_set=atomic_kind_set, particle_set=particle_set, &
sab_orb=sab_orb, sac_ae=sac_ae, nimages=1, &
cell_to_index=cell_to_index)
END IF
! *** compute the ppl contribution to the core hamiltonian ***
ppl_present = ASSOCIATED(sac_ppl)
IF (ppl_present) THEN
IF (dft_control%qs_control%do_ppl_method == do_ppl_analytic) THEN
matrix_hc_pass(1:3, 1:1) => dcdr_env%matrix_hc(1:3)
matrix_p_pass(1:1, 1:1) => rho_ao(1:1)
CALL build_core_ppl(matrix_h=matrix_hc_pass, matrix_p=matrix_p_pass, &
force=force, virial=virial, calculate_forces=calculate_forces, &
use_virial=use_virial, nder=nder, qs_kind_set=qs_kind_set, &
atomic_kind_set=atomic_kind_set, particle_set=particle_set, &
sab_orb=sab_orb, sac_ppl=sac_ppl, basis_type=my_basis_type, &
nimages=1, cell_to_index=cell_to_index, deltaR=deltaR)
END IF ! ppl_analytic
END IF ! ppl_present
! *** compute the ppnl contribution to the core hamiltonian ***
eps_ppnl = dft_control%qs_control%eps_ppnl
ppnl_present = ASSOCIATED(sap_ppnl)
IF (ppnl_present) THEN
matrix_ppnl_1_pass(1:3, 1:1) => dcdr_env%matrix_ppnl_1(1:3)
CALL build_core_ppnl(matrix_h=matrix_ppnl_1_pass, matrix_p=matrix_p_pass, force=force, virial=virial, &
calculate_forces=calculate_forces, use_virial=use_virial, nder=nder, &
qs_kind_set=qs_kind_set, atomic_kind_set=atomic_kind_set, &
particle_set=particle_set, sab_orb=sab_orb, sap_ppnl=sap_ppnl, &
eps_ppnl=eps_ppnl, nimages=1, cell_to_index=cell_to_index, &
basis_type=my_basis_type, deltaR=deltaR)
END IF
CALL timestop(handle)
END SUBROUTINE core_dR
! **************************************************************************************************
!> \brief The derivatives of the basis functions going into the HXC potential wrt nuclear positions
!> \param qs_env ...
!> \param dcdr_env ...
!> \author Edward Ditler
! **************************************************************************************************
SUBROUTINE d_vhxc_dR(qs_env, dcdr_env)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(dcdr_env_type) :: dcdr_env
CHARACTER(len=*), PARAMETER :: routineN = 'd_vhxc_dR'
INTEGER :: handle, idir, ispin
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: rho_ao
TYPE(pw_c1d_gs_type) :: drho_g_total, v_hartree_gspace
TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER :: drho_g
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_poisson_type), POINTER :: poisson_env
TYPE(pw_pool_p_type), DIMENSION(:), POINTER :: pw_pools
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type) :: drho_r_total, v_hartree_rspace
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: drho_r, dtau_r, rho_r, v_xc, v_xc_tau
TYPE(qs_rho_type), POINTER :: rho
TYPE(section_vals_type), POINTER :: input, xc_section
TYPE(xc_derivative_set_type) :: my_deriv_set
TYPE(xc_rho_set_type) :: my_rho_set
CALL timeset(routineN, handle)
CALL get_qs_env(qs_env=qs_env, &
pw_env=pw_env, &
input=input, &
rho=rho)
CALL qs_rho_get(rho, rho_ao=rho_ao, rho_r=rho_r)
xc_section => section_vals_get_subs_vals(input, "DFT%XC")
! get the tmp grids
ALLOCATE (drho_r(dcdr_env%nspins))
ALLOCATE (drho_g(dcdr_env%nspins))
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
pw_pools=pw_pools, poisson_env=poisson_env)
CALL auxbas_pw_pool%create_pw(v_hartree_gspace)
CALL auxbas_pw_pool%create_pw(v_hartree_rspace)
DO ispin = 1, dcdr_env%nspins
CALL auxbas_pw_pool%create_pw(drho_r(ispin))
CALL auxbas_pw_pool%create_pw(drho_g(ispin))
END DO
CALL auxbas_pw_pool%create_pw(drho_g_total)
CALL auxbas_pw_pool%create_pw(drho_r_total)
DO idir = 1, 3
CALL pw_zero(v_hartree_gspace)
CALL pw_zero(v_hartree_rspace)
CALL pw_zero(drho_g_total)
CALL pw_zero(drho_r_total)
DO ispin = 1, dcdr_env%nspins
CALL pw_zero(drho_r(ispin))
CALL pw_zero(drho_g(ispin))
! Get the density
CALL calculate_drho_elec_dR(matrix_p=rho_ao(ispin)%matrix, &
drho=drho_r(ispin), &
drho_gspace=drho_g(ispin), &
qs_env=qs_env, &
beta=idir, lambda=dcdr_env%lambda)
CALL pw_axpy(drho_g(ispin), drho_g_total)
CALL pw_axpy(drho_r(ispin), drho_r_total)
END DO
! Get the Hartree potential corresponding to the perturbed density
CALL pw_poisson_solve(poisson_env, drho_g_total, &
vhartree=v_hartree_gspace)
CALL pw_transfer(v_hartree_gspace, v_hartree_rspace)
! Get the XC potential corresponding to the perturbed density
CALL xc_prep_2nd_deriv(my_deriv_set, my_rho_set, &
rho_r, auxbas_pw_pool, &
xc_section=xc_section)
NULLIFY (dtau_r)
CALL xc_calc_2nd_deriv(v_xc, v_xc_tau, my_deriv_set, my_rho_set, &
drho_r, drho_g, dtau_r, auxbas_pw_pool, xc_section, gapw=.FALSE.)
IF (ASSOCIATED(v_xc_tau)) CPABORT("Meta functionals are not supported!")
CALL xc_dset_release(my_deriv_set)
CALL xc_rho_set_release(my_rho_set)
!-------------------------------!
! Add both hartree and xc terms !
!-------------------------------!
DO ispin = 1, dcdr_env%nspins
! Can the dvol be different?
CALL pw_scale(v_xc(ispin), v_xc(ispin)%pw_grid%dvol)
CALL pw_axpy(v_hartree_rspace, v_xc(ispin), v_hartree_rspace%pw_grid%dvol)
CALL integrate_v_rspace(v_rspace=v_xc(ispin), &
hmat=dcdr_env%matrix_d_vhxc_dR(idir, ispin), &
qs_env=qs_env, &
calculate_forces=.FALSE.)
! v_xc gets allocated again in xc_calc_2nd_deriv
CALL auxbas_pw_pool%give_back_pw(v_xc(ispin))
END DO ! ispin
DEALLOCATE (v_xc)
END DO ! idir
CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace)
CALL auxbas_pw_pool%give_back_pw(v_hartree_rspace)
CALL auxbas_pw_pool%give_back_pw(drho_g_total)
CALL auxbas_pw_pool%give_back_pw(drho_r_total)
DO ispin = 1, dcdr_env%nspins
CALL auxbas_pw_pool%give_back_pw(drho_g(ispin))
CALL auxbas_pw_pool%give_back_pw(drho_r(ispin))
END DO
DEALLOCATE (drho_g)
DEALLOCATE (drho_r)
CALL timestop(handle)
END SUBROUTINE d_vhxc_dR
! **************************************************************************************************
!> \brief The derivatives of the basis functions over which the HXC potential is integrated,
!> so < da/dR | Vhxc | b >
!> \param qs_env ...
!> \param dcdr_env ...
!> \author Edward Ditler
! **************************************************************************************************
SUBROUTINE vhxc_R_perturbed_basis_functions(qs_env, dcdr_env)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(dcdr_env_type) :: dcdr_env
CHARACTER(LEN=*), PARAMETER :: routineN = 'vhxc_R_perturbed_basis_functions'
INTEGER :: handle, ispin
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_vhxc_dbasis
TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_p
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: v_hxc_r, v_tau_rspace
TYPE(pw_r3d_rs_type), POINTER :: v_hartree_r
TYPE(qs_energy_type), POINTER :: energy
TYPE(qs_ks_env_type), POINTER :: ks_env
TYPE(qs_rho_type), POINTER :: rho_struct
TYPE(section_vals_type), POINTER :: input, xc_section
CALL timeset(routineN, handle)
NULLIFY (rho_struct, energy, input, ks_env, pw_env, matrix_p)
CALL get_qs_env(qs_env, &
rho=rho_struct, &
energy=energy, &
input=input, &
ks_env=ks_env, &
pw_env=pw_env, &
v_hartree_rspace=v_hartree_r)
CALL qs_rho_get(rho_struct, rho_ao_kp=matrix_p)
xc_section => section_vals_get_subs_vals(input, "DFT%XC")
NULLIFY (auxbas_pw_pool)
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
! *** calculate the xc potential on the pw density ***
! *** associates v_hxc_r if the xc potential needs to be computed.
! If we do wavefunction fitting, we need the vxc_potential in the auxiliary basis set
NULLIFY (v_hxc_r, v_tau_rspace)
CALL qs_vxc_create(ks_env=ks_env, rho_struct=rho_struct, xc_section=xc_section, &
vxc_rho=v_hxc_r, vxc_tau=v_tau_rspace, exc=energy%exc)
DO ispin = 1, dcdr_env%nspins
CALL pw_scale(v_hxc_r(ispin), v_hxc_r(ispin)%pw_grid%dvol)
! sum up potentials and integrate
CALL pw_axpy(v_hartree_r, v_hxc_r(ispin), 1._dp)
matrix_vhxc_dbasis => dcdr_env%matrix_vhxc_perturbed_basis(ispin, :)
CALL integrate_v_dbasis(v_rspace=v_hxc_r(ispin), &
matrix_p=matrix_p(ispin, 1)%matrix, &
matrix_vhxc_dbasis=matrix_vhxc_dbasis, &
qs_env=qs_env, &
lambda=dcdr_env%lambda)
CALL auxbas_pw_pool%give_back_pw(v_hxc_r(ispin))
END DO
DEALLOCATE (v_hxc_r)
CALL timestop(handle)
END SUBROUTINE vhxc_R_perturbed_basis_functions
! **************************************************************************************************
!> \brief Enforce that one of the basis functions in < a | O | b > is centered on atom lambda.
!> \param matrix ...
!> \param qs_kind_set ...
!> \param basis_type ...
!> \param sab_nl ...
!> \param lambda Atom index
!> \param direction_Or True: < a | O | b==lambda >, False: < a==lambda | O | b >
! **************************************************************************************************
SUBROUTINE hr_mult_by_delta_1d(matrix, qs_kind_set, basis_type, sab_nl, lambda, direction_Or)
TYPE(dbcsr_type), POINTER :: matrix
TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
CHARACTER(LEN=*), INTENT(IN) :: basis_type
TYPE(neighbor_list_set_p_type), DIMENSION(:), &
POINTER :: sab_nl
INTEGER, INTENT(IN) :: lambda
LOGICAL, INTENT(IN) :: direction_Or
CHARACTER(len=*), PARAMETER :: routineN = 'hr_mult_by_delta_1d'
INTEGER :: handle, iatom, icol, ikind, irow, jatom, &
jkind, ldsab, mepos, nkind, nseta, &
nsetb, nthread
INTEGER, DIMENSION(3) :: cell
INTEGER, DIMENSION(:), POINTER :: la_max, la_min, lb_max, lb_min, npgfa, &
npgfb, nsgfa, nsgfb
INTEGER, DIMENSION(:, :), POINTER :: first_sgfa, first_sgfb
LOGICAL :: do_symmetric, found
REAL(KIND=dp), DIMENSION(3) :: rab
REAL(KIND=dp), DIMENSION(:), POINTER :: set_radius_a, set_radius_b
REAL(KIND=dp), DIMENSION(:, :), POINTER :: k_block, rpgfa, rpgfb, scon_a, scon_b, &
zeta, zetb
TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER :: basis_set_list
TYPE(gto_basis_set_type), POINTER :: basis_set_a, basis_set_b
TYPE(neighbor_list_iterator_p_type), &
DIMENSION(:), POINTER :: nl_iterator
CALL timeset(routineN, handle)
nkind = SIZE(qs_kind_set)
! check for symmetry
CPASSERT(SIZE(sab_nl) > 0)
CALL get_neighbor_list_set_p(neighbor_list_sets=sab_nl, symmetric=do_symmetric)
! prepare basis set
ALLOCATE (basis_set_list(nkind))
CALL basis_set_list_setup(basis_set_list, basis_type, qs_kind_set)
! *** Allocate work storage ***
ldsab = get_memory_usage(qs_kind_set, basis_type)
nthread = 1
!$ nthread = omp_get_max_threads()
! Iterate of neighbor list
CALL neighbor_list_iterator_create(nl_iterator, sab_nl, nthread=nthread)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED (nthread,ldsab,nl_iterator, do_symmetric) &
!$OMP SHARED (ncoset,matrix,basis_set_list) &
!$OMP SHARED (direction_or, lambda) &
!$OMP PRIVATE (k_block,mepos,ikind,jkind,iatom,jatom,rab,cell) &
!$OMP PRIVATE (basis_set_a,basis_set_b) &
!$OMP PRIVATE (first_sgfa, la_max, la_min, npgfa, nsgfa, nseta, rpgfa, set_radius_a) &
!$OMP PRIVATE (zeta, first_sgfb, lb_max, lb_min, npgfb, nsetb, rpgfb, set_radius_b, nsgfb) &
!$OMP PRIVATE (zetb, scon_a, scon_b, irow, icol, found)
mepos = 0
!$ mepos = omp_get_thread_num()
DO WHILE (neighbor_list_iterate(nl_iterator, mepos=mepos) == 0)
CALL get_iterator_info(nl_iterator, mepos=mepos, ikind=ikind, jkind=jkind, &
iatom=iatom, jatom=jatom, r=rab, cell=cell)
basis_set_a => basis_set_list(ikind)%gto_basis_set
IF (.NOT. ASSOCIATED(basis_set_a)) CYCLE
basis_set_b => basis_set_list(jkind)%gto_basis_set
IF (.NOT. ASSOCIATED(basis_set_b)) CYCLE
! basis ikind
first_sgfa => basis_set_a%first_sgf
la_max => basis_set_a%lmax
la_min => basis_set_a%lmin
npgfa => basis_set_a%npgf
nseta = basis_set_a%nset
nsgfa => basis_set_a%nsgf_set
rpgfa => basis_set_a%pgf_radius
set_radius_a => basis_set_a%set_radius
scon_a => basis_set_a%scon
zeta => basis_set_a%zet
! basis jkind
first_sgfb => basis_set_b%first_sgf
lb_max => basis_set_b%lmax
lb_min => basis_set_b%lmin
npgfb => basis_set_b%npgf
nsetb = basis_set_b%nset
nsgfb => basis_set_b%nsgf_set
rpgfb => basis_set_b%pgf_radius
set_radius_b => basis_set_b%set_radius
scon_b => basis_set_b%scon
zetb => basis_set_b%zet
IF (do_symmetric) THEN
IF (iatom <= jatom) THEN
irow = iatom
icol = jatom
ELSE
irow = jatom
icol = iatom
END IF
ELSE
irow = iatom
icol = jatom
END IF
NULLIFY (k_block)
CALL dbcsr_get_block_p(matrix, irow, icol, k_block, found)
CPASSERT(found)
IF (direction_Or) THEN
IF (jatom /= lambda) k_block(:, :) = 0._dp
ELSE IF (.NOT. direction_Or) THEN
IF (iatom /= lambda) k_block(:, :) = 0._dp
END IF
END DO
!$OMP END PARALLEL
CALL neighbor_list_iterator_release(nl_iterator)
! Release work storage
DEALLOCATE (basis_set_list)
CALL timestop(handle)
END SUBROUTINE hr_mult_by_delta_1d
END MODULE qs_dcdr_ao