-
Notifications
You must be signed in to change notification settings - Fork 1
/
negf_integr_cc.F
543 lines (449 loc) · 24.3 KB
/
negf_integr_cc.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Adaptive Clenshaw-Curtis quadrature algorithm to integrate a complex-valued function in
!> a complex plane
!> \par History
!> * 05.2017 created [Sergey Chulkov]
! **************************************************************************************************
MODULE negf_integr_cc
USE cp_cfm_basic_linalg, ONLY: cp_cfm_scale,&
cp_cfm_scale_and_add
USE cp_cfm_types, ONLY: cp_cfm_create,&
cp_cfm_get_info,&
cp_cfm_release,&
cp_cfm_type
USE cp_fm_basic_linalg, ONLY: cp_fm_trace
USE cp_fm_struct, ONLY: cp_fm_struct_equivalent,&
cp_fm_struct_type
USE cp_fm_types, ONLY: cp_fm_create,&
cp_fm_get_info,&
cp_fm_release,&
cp_fm_type
USE fft_tools, ONLY: fft_alloc,&
fft_dealloc,&
fft_fw1d
USE kahan_sum, ONLY: accurate_sum
USE kinds, ONLY: dp,&
int_8
USE mathconstants, ONLY: z_one,&
z_zero
USE negf_integr_utils, ONLY: contour_shape_arc,&
contour_shape_linear,&
equidistant_nodes_a_b,&
rescale_nodes_cos,&
rescale_normalised_nodes
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'negf_integr_cc'
LOGICAL, PARAMETER, PRIVATE :: debug_this_module = .TRUE.
INTEGER, PARAMETER, PUBLIC :: cc_interval_full = 0, &
cc_interval_half = 1
INTEGER, PARAMETER, PUBLIC :: cc_shape_linear = contour_shape_linear, &
cc_shape_arc = contour_shape_arc
PUBLIC :: ccquad_type
PUBLIC :: ccquad_init, &
ccquad_release, &
ccquad_double_number_of_points, &
ccquad_reduce_and_append_zdata, &
ccquad_refine_integral
! **************************************************************************************************
!> \brief Adaptive Clenshaw-Curtis environment.
! **************************************************************************************************
TYPE ccquad_type
!> integration lower and upper bounds
COMPLEX(kind=dp) :: a = z_zero, b = z_zero
!> integration interval:
!> cc_interval_full -- [a .. b],
!> grid density: 'a' .. . . . . . .. 'b';
!> cc_interval_half -- [a .. 2b-a], assuming int_{b}^{2b-a} f(x) dx = 0,
!> grid density: 'a' .. . . . 'b'
INTEGER :: interval_id = -1
!> integration shape
INTEGER :: shape_id = -1
!> estimated error
REAL(kind=dp) :: error = -1.0_dp
!> approximate integral value
TYPE(cp_cfm_type), POINTER :: integral => NULL()
!> error estimate for every element of the 'integral' matrix
TYPE(cp_fm_type), POINTER :: error_fm => NULL()
!> weights associated with matrix elements; the 'error' variable contains the value Trace(error_fm * weights)
TYPE(cp_fm_type), POINTER :: weights => NULL()
!> integrand value at grid points. Due to symmetry of Clenshaw-Curtis quadratures,
!> we only need to keep the left half-interval
TYPE(cp_cfm_type), ALLOCATABLE, DIMENSION(:) :: zdata_cache
REAL(kind=dp), ALLOCATABLE, DIMENSION(:) :: tnodes
END TYPE ccquad_type
CONTAINS
! **************************************************************************************************
!> \brief Initialise a Clenshaw-Curtis quadrature environment variable.
!> \param cc_env environment variable to initialise
!> \param xnodes points at which an integrand needs to be computed (initialised on exit)
!> \param nnodes initial number of points to compute (initialised on exit)
!> \param a integral lower bound
!> \param b integral upper bound
!> \param interval_id full [-1 .. 1] or half [-1 .. 0] interval
!> \param shape_id shape of a curve along which the integral will be evaluated
!> \param weights weights associated with matrix elements; used to compute cumulative error
!> \param tnodes_restart list of nodes over the interval [-1 .. 1] from a previous integral evaluation.
!> If present, the same set of 'xnodes' will be used to compute this integral.
!> \par History
!> * 05.2017 created [Sergey Chulkov]
!> \note Clenshaw-Curtis quadratures are defined on the interval [-1 .. 1] and have non-uniforms node
!> distribution which is symmetric and much sparse about 0. When the half-interval [-1 .. 0]
!> is requested, the integrand value on another subinterval (0 .. 1] is assumed to be zero.
!> Half interval mode is typically useful for rapidly decaying integrands (e.g. multiplied by
!> Fermi function), so we do not actually need a fine grid spacing on this tail.
! **************************************************************************************************
SUBROUTINE ccquad_init(cc_env, xnodes, nnodes, a, b, interval_id, shape_id, weights, tnodes_restart)
TYPE(ccquad_type), INTENT(out) :: cc_env
INTEGER, INTENT(inout) :: nnodes
COMPLEX(kind=dp), DIMENSION(nnodes), INTENT(out) :: xnodes
COMPLEX(kind=dp), INTENT(in) :: a, b
INTEGER, INTENT(in) :: interval_id, shape_id
TYPE(cp_fm_type), INTENT(IN) :: weights
REAL(kind=dp), DIMENSION(nnodes), INTENT(in), &
OPTIONAL :: tnodes_restart
CHARACTER(len=*), PARAMETER :: routineN = 'ccquad_init'
INTEGER :: handle, icol, ipoint, irow, ncols, &
nnodes_half, nrows
REAL(kind=dp), CONTIGUOUS, DIMENSION(:, :), &
POINTER :: w_data, w_data_my
TYPE(cp_fm_struct_type), POINTER :: fm_struct
CALL timeset(routineN, handle)
CPASSERT(nnodes > 2)
! ensure that MOD(nnodes-1, 2) == 0
nnodes = 2*((nnodes - 1)/2) + 1
cc_env%interval_id = interval_id
cc_env%shape_id = shape_id
cc_env%a = a
cc_env%b = b
cc_env%error = HUGE(0.0_dp)
NULLIFY (cc_env%integral, cc_env%error_fm, cc_env%weights)
ALLOCATE (cc_env%weights)
CALL cp_fm_get_info(weights, local_data=w_data, nrow_local=nrows, ncol_local=ncols, matrix_struct=fm_struct)
CALL cp_fm_create(cc_env%weights, fm_struct)
CALL cp_fm_get_info(cc_env%weights, local_data=w_data_my)
! use the explicit loop to avoid temporary arrays
DO icol = 1, ncols
DO irow = 1, nrows
w_data_my(irow, icol) = ABS(w_data(irow, icol))
END DO
END DO
SELECT CASE (interval_id)
CASE (cc_interval_full)
nnodes_half = nnodes/2 + 1
CASE (cc_interval_half)
nnodes_half = nnodes
CASE DEFAULT
CPABORT("Unimplemented interval type")
END SELECT
ALLOCATE (cc_env%tnodes(nnodes))
IF (PRESENT(tnodes_restart)) THEN
cc_env%tnodes(1:nnodes) = tnodes_restart(1:nnodes)
ELSE
CALL equidistant_nodes_a_b(-1.0_dp, 0.0_dp, nnodes_half, cc_env%tnodes)
! rescale all but the end-points, as they are transformed into themselves (-1.0 -> -1.0; 0.0 -> 0.0).
! Moreover, by applying this rescaling transformation to the end-points we cannot guarantee the exact
! result due to rounding errors in evaluation of COS function.
IF (nnodes_half > 2) &
CALL rescale_nodes_cos(nnodes_half - 2, cc_env%tnodes(2:))
SELECT CASE (interval_id)
CASE (cc_interval_full)
! reflect symmetric nodes
DO ipoint = nnodes_half - 1, 1, -1
cc_env%tnodes(nnodes_half + ipoint) = -cc_env%tnodes(nnodes_half - ipoint)
END DO
CASE (cc_interval_half)
! rescale half-interval : [-1 .. 0] -> [-1 .. 1]
cc_env%tnodes(1:nnodes_half) = 2.0_dp*cc_env%tnodes(1:nnodes_half) + 1.0_dp
END SELECT
END IF
CALL rescale_normalised_nodes(nnodes, cc_env%tnodes, a, b, shape_id, xnodes)
CALL timestop(handle)
END SUBROUTINE ccquad_init
! **************************************************************************************************
!> \brief Release a Clenshaw-Curtis quadrature environment variable.
!> \param cc_env environment variable to release (modified on exit)
!> \par History
!> * 05.2017 created [Sergey Chulkov]
! **************************************************************************************************
SUBROUTINE ccquad_release(cc_env)
TYPE(ccquad_type), INTENT(inout) :: cc_env
CHARACTER(len=*), PARAMETER :: routineN = 'ccquad_release'
INTEGER :: handle, ipoint
CALL timeset(routineN, handle)
IF (ASSOCIATED(cc_env%error_fm)) THEN
CALL cp_fm_release(cc_env%error_fm)
DEALLOCATE (cc_env%error_fm)
NULLIFY (cc_env%error_fm)
END IF
IF (ASSOCIATED(cc_env%weights)) THEN
CALL cp_fm_release(cc_env%weights)
DEALLOCATE (cc_env%weights)
NULLIFY (cc_env%weights)
END IF
IF (ASSOCIATED(cc_env%integral)) THEN
CALL cp_cfm_release(cc_env%integral)
DEALLOCATE (cc_env%integral)
NULLIFY (cc_env%integral)
END IF
IF (ALLOCATED(cc_env%zdata_cache)) THEN
DO ipoint = SIZE(cc_env%zdata_cache), 1, -1
CALL cp_cfm_release(cc_env%zdata_cache(ipoint))
END DO
DEALLOCATE (cc_env%zdata_cache)
END IF
IF (ALLOCATED(cc_env%tnodes)) DEALLOCATE (cc_env%tnodes)
CALL timestop(handle)
END SUBROUTINE ccquad_release
! **************************************************************************************************
!> \brief Get the next set of points at which the integrand needs to be computed. These points are
!> then can be used to refine the integral approximation.
!> \param cc_env environment variable (modified on exit)
!> \param xnodes_next set of additional points (allocated and initialised on exit)
!> \par History
!> * 05.2017 created [Sergey Chulkov]
! **************************************************************************************************
SUBROUTINE ccquad_double_number_of_points(cc_env, xnodes_next)
TYPE(ccquad_type), INTENT(inout) :: cc_env
COMPLEX(kind=dp), ALLOCATABLE, DIMENSION(:), &
INTENT(inout) :: xnodes_next
CHARACTER(len=*), PARAMETER :: routineN = 'ccquad_double_number_of_points'
INTEGER :: handle, ipoint, nnodes_exist, &
nnodes_half, nnodes_next
REAL(kind=dp), ALLOCATABLE, DIMENSION(:) :: tnodes, tnodes_old
CALL timeset(routineN, handle)
CPASSERT(.NOT. ALLOCATED(xnodes_next))
CPASSERT(ASSOCIATED(cc_env%integral))
CPASSERT(ASSOCIATED(cc_env%error_fm))
CPASSERT(ALLOCATED(cc_env%zdata_cache))
! due to symmetry of Clenshaw-Curtis quadratures, we only need to keep the left half-interval [-1 .. 0]
nnodes_exist = SIZE(cc_env%zdata_cache)
! new nodes will be placed between the existed ones, so the number of nodes
! on the left half-interval [-1 .. 0] is equal to nnodes_exist - 1
nnodes_half = nnodes_exist - 1
SELECT CASE (cc_env%interval_id)
CASE (cc_interval_full)
! double number of nodes as we have 2 half-intervals [-1 .. 0] and [0 .. 1]
nnodes_next = 2*nnodes_half
CASE (cc_interval_half)
nnodes_next = nnodes_half
CASE DEFAULT
CPABORT("Unimplemented interval type")
END SELECT
ALLOCATE (xnodes_next(nnodes_next))
ALLOCATE (tnodes(nnodes_next))
CALL equidistant_nodes_a_b(0.5_dp/REAL(nnodes_half, kind=dp) - 1.0_dp, &
-0.5_dp/REAL(nnodes_half, kind=dp), &
nnodes_half, tnodes)
CALL rescale_nodes_cos(nnodes_half, tnodes)
SELECT CASE (cc_env%interval_id)
CASE (cc_interval_full)
! reflect symmetric nodes
DO ipoint = 1, nnodes_half
tnodes(nnodes_half + ipoint) = -tnodes(nnodes_half - ipoint + 1)
END DO
CASE (cc_interval_half)
! rescale half-interval : [-1 .. 0] -> [-1 .. 1]
tnodes(1:nnodes_half) = 2.0_dp*tnodes(1:nnodes_half) + 1.0_dp
END SELECT
! append new tnodes to the cache
CALL MOVE_ALLOC(cc_env%tnodes, tnodes_old)
nnodes_exist = SIZE(tnodes_old)
ALLOCATE (cc_env%tnodes(nnodes_exist + nnodes_next))
cc_env%tnodes(1:nnodes_exist) = tnodes_old(1:nnodes_exist)
cc_env%tnodes(nnodes_exist + 1:nnodes_exist + nnodes_next) = tnodes(1:nnodes_next)
DEALLOCATE (tnodes_old)
! rescale nodes [-1 .. 1] -> [a .. b] according to the shape
CALL rescale_normalised_nodes(nnodes_next, tnodes, cc_env%a, cc_env%b, cc_env%shape_id, xnodes_next)
DEALLOCATE (tnodes)
CALL timestop(handle)
END SUBROUTINE ccquad_double_number_of_points
! **************************************************************************************************
!> \brief Prepare Clenshaw-Curtis environment for the subsequent refinement of the integral.
!> \param cc_env environment variable (modified on exit)
!> \param zdata_next additional integrand value at additional points (modified on exit)
!> \par History
!> * 05.2017 created [Sergey Chulkov]
!> \note Due to symmetry of Clenshaw-Curtis quadratures (weight(x) == weight(-x)), we do not need to
!> keep all the matrices from 'zdata_next', only 'zdata_next(x) + zdata_next(-x)' is needed.
!> In order to reduce the number of matrix allocations, we move some of the matrices from the
!> end of the 'zdata_new' array to the 'cc_env%zdata_cache' array, and nullify the corresponding
!> pointers at 'zdata_next' array. So the calling subroutine need to release the remained
!> matrices or reuse them but taking into account the missed ones.
! **************************************************************************************************
SUBROUTINE ccquad_reduce_and_append_zdata(cc_env, zdata_next)
TYPE(ccquad_type), INTENT(inout) :: cc_env
TYPE(cp_cfm_type), DIMENSION(:), INTENT(inout) :: zdata_next
CHARACTER(len=*), PARAMETER :: routineN = 'ccquad_reduce_and_append_zdata'
TYPE(cp_cfm_type), PARAMETER :: cfm_null = cp_cfm_type()
COMPLEX(kind=dp), ALLOCATABLE, DIMENSION(:) :: zscale
INTEGER :: handle, ipoint, nnodes_exist, &
nnodes_half, nnodes_next
TYPE(cp_cfm_type), ALLOCATABLE, DIMENSION(:) :: zdata_tmp
CALL timeset(routineN, handle)
nnodes_next = SIZE(zdata_next)
CPASSERT(nnodes_next > 0)
! compute weights of new points on a complex contour according to their values of the 't' parameter
nnodes_exist = SIZE(cc_env%tnodes)
CPASSERT(nnodes_exist >= nnodes_next)
ALLOCATE (zscale(nnodes_next))
CALL rescale_normalised_nodes(nnodes_next, cc_env%tnodes(nnodes_exist - nnodes_next + 1:nnodes_exist), &
cc_env%a, cc_env%b, cc_env%shape_id, weights=zscale)
IF (cc_env%interval_id == cc_interval_half) zscale(:) = 2.0_dp*zscale(:)
! rescale integrand values
DO ipoint = 1, nnodes_next
CALL cp_cfm_scale(zscale(ipoint), zdata_next(ipoint))
END DO
DEALLOCATE (zscale)
! squash points with the same clenshaw-curtis weights together
IF (ALLOCATED(cc_env%zdata_cache)) THEN
nnodes_exist = SIZE(cc_env%zdata_cache)
ELSE
nnodes_exist = 0
END IF
SELECT CASE (cc_env%interval_id)
CASE (cc_interval_full)
IF (ALLOCATED(cc_env%zdata_cache)) THEN
CPASSERT(nnodes_exist == nnodes_next/2 + 1)
nnodes_half = nnodes_exist - 1
ELSE
CPASSERT(MOD(nnodes_next, 2) == 1)
nnodes_half = nnodes_next/2 + 1
END IF
CASE (cc_interval_half)
IF (ALLOCATED(cc_env%zdata_cache)) THEN
CPASSERT(nnodes_exist == nnodes_next + 1)
END IF
nnodes_half = nnodes_next
END SELECT
IF (cc_env%interval_id == cc_interval_full) THEN
DO ipoint = nnodes_next/2, 1, -1
CALL cp_cfm_scale_and_add(z_one, zdata_next(ipoint), z_one, zdata_next(nnodes_next - ipoint + 1))
END DO
END IF
IF (ALLOCATED(cc_env%zdata_cache)) THEN
! note that nnodes_half+1 == nnodes_exist for both half- and full-intervals
ALLOCATE (zdata_tmp(nnodes_half + nnodes_exist))
DO ipoint = 1, nnodes_half
zdata_tmp(2*ipoint - 1) = cc_env%zdata_cache(ipoint)
zdata_tmp(2*ipoint) = zdata_next(ipoint)
zdata_next(ipoint) = cfm_null
END DO
zdata_tmp(nnodes_half + nnodes_exist) = cc_env%zdata_cache(nnodes_exist)
CALL MOVE_ALLOC(zdata_tmp, cc_env%zdata_cache)
ELSE
CALL cp_cfm_scale(2.0_dp, zdata_next(nnodes_half))
ALLOCATE (cc_env%zdata_cache(nnodes_half))
DO ipoint = 1, nnodes_half
cc_env%zdata_cache(ipoint) = zdata_next(ipoint)
zdata_next(ipoint) = cfm_null
END DO
END IF
CALL timestop(handle)
END SUBROUTINE ccquad_reduce_and_append_zdata
! **************************************************************************************************
!> \brief Refine approximated integral.
!> \param cc_env environment variable (modified on exit)
!> \par History
!> * 05.2017 created [Sergey Chulkov]
! **************************************************************************************************
SUBROUTINE ccquad_refine_integral(cc_env)
TYPE(ccquad_type), INTENT(inout) :: cc_env
CHARACTER(len=*), PARAMETER :: routineN = 'ccquad_refine_integral'
COMPLEX(kind=dp), CONTIGUOUS, DIMENSION(:, :, :), &
POINTER :: ztmp, ztmp_dct
INTEGER :: handle, icol, ipoint, irow, ncols_local, nintervals, nintervals_half, &
nintervals_half_plus_1, nintervals_half_plus_2, nintervals_plus_2, nrows_local, stat
LOGICAL :: equiv
REAL(kind=dp) :: rscale
REAL(kind=dp), ALLOCATABLE, DIMENSION(:) :: weights
TYPE(cp_fm_struct_type), POINTER :: fm_struct
! TYPE(fft_plan_type) :: fft_plan
! INTEGER(kind=int_8) :: plan
CALL timeset(routineN, handle)
CPASSERT(ALLOCATED(cc_env%zdata_cache))
nintervals_half_plus_1 = SIZE(cc_env%zdata_cache)
nintervals_half = nintervals_half_plus_1 - 1
nintervals_half_plus_2 = nintervals_half_plus_1 + 1
nintervals = 2*nintervals_half
nintervals_plus_2 = nintervals + 2
CPASSERT(nintervals_half > 1)
IF (.NOT. ASSOCIATED(cc_env%integral)) THEN
CALL cp_cfm_get_info(cc_env%zdata_cache(1), matrix_struct=fm_struct)
equiv = cp_fm_struct_equivalent(fm_struct, cc_env%weights%matrix_struct)
CPASSERT(equiv)
ALLOCATE (cc_env%integral)
CALL cp_cfm_create(cc_env%integral, fm_struct)
NULLIFY (cc_env%error_fm)
ALLOCATE (cc_env%error_fm)
CALL cp_fm_create(cc_env%error_fm, fm_struct)
END IF
IF (debug_this_module) THEN
DO ipoint = 1, nintervals_half_plus_1
equiv = cp_fm_struct_equivalent(cc_env%zdata_cache(ipoint)%matrix_struct, cc_env%integral%matrix_struct)
CPASSERT(equiv)
END DO
END IF
CALL cp_cfm_get_info(cc_env%integral, nrow_local=nrows_local, ncol_local=ncols_local)
ALLOCATE (weights(nintervals_half))
! omit the trivial weights(1) = 0.5
DO ipoint = 2, nintervals_half
rscale = REAL(2*(ipoint - 1), kind=dp)
weights(ipoint) = 1.0_dp/(1.0_dp - rscale*rscale)
END DO
! weights(1) <- weights(intervals_half + 1)
rscale = REAL(nintervals, kind=dp)
weights(1) = 1.0_dp/(1.0_dp - rscale*rscale)
! 1.0 / nintervals
rscale = 1.0_dp/rscale
CALL fft_alloc(ztmp, [nintervals, nrows_local, ncols_local])
CALL fft_alloc(ztmp_dct, [nintervals, nrows_local, ncols_local])
!$OMP PARALLEL DO DEFAULT(NONE), PRIVATE(icol, ipoint, irow), &
!$OMP SHARED(cc_env, ncols_local, nintervals_half, nintervals_half_plus_1, nintervals_half_plus_2, nrows_local, ztmp)
DO icol = 1, ncols_local
DO irow = 1, nrows_local
DO ipoint = 1, nintervals_half_plus_1
ztmp(ipoint, irow, icol) = cc_env%zdata_cache(ipoint)%local_data(irow, icol)
END DO
DO ipoint = 2, nintervals_half
ztmp(nintervals_half + ipoint, irow, icol) = ztmp(nintervals_half_plus_2 - ipoint, irow, icol)
END DO
END DO
END DO
!$OMP END PARALLEL DO
CALL fft_fw1d(nintervals, nrows_local*ncols_local, .FALSE., ztmp, ztmp_dct, 1.0_dp, stat)
IF (stat /= 0) THEN
CALL cp_abort(__LOCATION__, &
"An FFT library is required for Clenshaw-Curtis quadrature. "// &
"You can use an alternative integration method instead.")
END IF
!$OMP PARALLEL DO DEFAULT(NONE), PRIVATE(icol, ipoint, irow), &
!$OMP SHARED(cc_env, rscale, ncols_local, nintervals_half, nintervals_half_plus_1, nintervals_plus_2), &
!$OMP SHARED(nrows_local, weights, ztmp_dct)
DO icol = 1, ncols_local
DO irow = 1, nrows_local
ztmp_dct(1, irow, icol) = 0.5_dp*ztmp_dct(1, irow, icol)
DO ipoint = 2, nintervals_half
ztmp_dct(ipoint, irow, icol) = 0.5_dp*weights(ipoint)*(ztmp_dct(ipoint, irow, icol) + &
ztmp_dct(nintervals_plus_2 - ipoint, irow, icol))
END DO
ztmp_dct(nintervals_half_plus_1, irow, icol) = weights(1)*ztmp_dct(nintervals_half_plus_1, irow, icol)
cc_env%integral%local_data(irow, icol) = rscale*accurate_sum(ztmp_dct(1:nintervals_half_plus_1, irow, icol))
cc_env%error_fm%local_data(irow, icol) = rscale*ABS(ztmp_dct(nintervals_half_plus_1, irow, icol))
END DO
END DO
!$OMP END PARALLEL DO
CALL fft_dealloc(ztmp)
CALL fft_dealloc(ztmp_dct)
CALL cp_fm_trace(cc_env%error_fm, cc_env%weights, cc_env%error)
DEALLOCATE (weights)
CALL timestop(handle)
END SUBROUTINE ccquad_refine_integral
END MODULE negf_integr_cc