-
Notifications
You must be signed in to change notification settings - Fork 1
/
molecular_dipoles.F
239 lines (214 loc) · 12.4 KB
/
molecular_dipoles.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Set of routines handling the localization for molecular properties
! **************************************************************************************************
MODULE molecular_dipoles
USE atomic_kind_types, ONLY: atomic_kind_type,&
get_atomic_kind
USE cell_types, ONLY: cell_type,&
pbc
USE cp_control_types, ONLY: dft_control_type
USE cp_log_handling, ONLY: cp_get_default_logger,&
cp_logger_type
USE cp_output_handling, ONLY: cp_print_key_finished_output,&
cp_print_key_unit_nr
USE distribution_1d_types, ONLY: distribution_1d_type
USE input_section_types, ONLY: section_get_ival,&
section_vals_type,&
section_vals_val_get
USE kinds, ONLY: dp
USE mathconstants, ONLY: twopi
USE message_passing, ONLY: mp_para_env_type
USE molecule_kind_types, ONLY: get_molecule_kind,&
molecule_kind_type
USE molecule_types, ONLY: molecule_type
USE moments_utils, ONLY: get_reference_point
USE particle_types, ONLY: particle_type
USE physcon, ONLY: debye
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_kind_types, ONLY: get_qs_kind,&
qs_kind_type
USE qs_loc_types, ONLY: qs_loc_env_type
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
! *** Public ***
PUBLIC :: calculate_molecular_dipole
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'molecular_dipoles'
CONTAINS
! **************************************************************************************************
!> \brief maps wfc's to molecules and also prints molecular dipoles
!> \param qs_env the qs_env in which the qs_env lives
!> \param qs_loc_env ...
!> \param loc_print_key ...
!> \param molecule_set ...
! **************************************************************************************************
SUBROUTINE calculate_molecular_dipole(qs_env, qs_loc_env, loc_print_key, molecule_set)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(qs_loc_env_type), INTENT(IN) :: qs_loc_env
TYPE(section_vals_type), POINTER :: loc_print_key
TYPE(molecule_type), POINTER :: molecule_set(:)
COMPLEX(KIND=dp) :: zeta
COMPLEX(KIND=dp), DIMENSION(3) :: ggamma, zphase
INTEGER :: akind, first_atom, i, iatom, ikind, &
imol, imol_now, iounit, ispin, istate, &
j, natom, nkind, nmol, nspins, nstate, &
reference
LOGICAL :: do_berry, floating, ghost
REAL(KIND=dp) :: charge_tot, dipole(3), ria(3), theta, &
zeff, zwfc
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: charge_set
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: dipole_set
REAL(KIND=dp), DIMENSION(3) :: ci, gvec, rcc
REAL(KIND=dp), DIMENSION(:), POINTER :: ref_point
REAL(KIND=dp), DIMENSION(:, :), POINTER :: center(:, :)
TYPE(atomic_kind_type), POINTER :: atomic_kind
TYPE(cell_type), POINTER :: cell
TYPE(cp_logger_type), POINTER :: logger
TYPE(dft_control_type), POINTER :: dft_control
TYPE(distribution_1d_type), POINTER :: local_molecules
TYPE(molecule_kind_type), POINTER :: molecule_kind
TYPE(mp_para_env_type), POINTER :: para_env
TYPE(particle_type), POINTER :: particle_set(:)
TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
logger => cp_get_default_logger()
CALL get_qs_env(qs_env, dft_control=dft_control)
nspins = dft_control%nspins
! Setup reference point
reference = section_get_ival(loc_print_key, keyword_name="MOLECULAR_DIPOLES%REFERENCE")
CALL section_vals_val_get(loc_print_key, "MOLECULAR_DIPOLES%REF_POINT", r_vals=ref_point)
CALL section_vals_val_get(loc_print_key, "MOLECULAR_DIPOLES%PERIODIC", l_val=do_berry)
CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, cell=cell)
particle_set => qs_loc_env%particle_set
para_env => qs_loc_env%para_env
local_molecules => qs_loc_env%local_molecules
nkind = SIZE(local_molecules%n_el)
zwfc = 3.0_dp - REAL(nspins, KIND=dp)
ALLOCATE (dipole_set(3, SIZE(molecule_set)))
ALLOCATE (charge_set(SIZE(molecule_set)))
dipole_set = 0.0_dp
charge_set = 0.0_dp
DO ispin = 1, nspins
center => qs_loc_env%localized_wfn_control%centers_set(ispin)%array
nstate = SIZE(center, 2)
DO ikind = 1, nkind ! loop over different molecules
nmol = SIZE(local_molecules%list(ikind)%array)
DO imol = 1, nmol ! all the molecules of the kind
imol_now = local_molecules%list(ikind)%array(imol) ! index in the global array
IF (.NOT. ASSOCIATED(molecule_set(imol_now)%lmi(ispin)%states)) CYCLE
molecule_kind => molecule_set(imol_now)%molecule_kind
first_atom = molecule_set(imol_now)%first_atom
CALL get_molecule_kind(molecule_kind=molecule_kind, natom=natom)
! Get reference point for this molecule
CALL get_reference_point(rcc, qs_env=qs_env, reference=reference, &
ref_point=ref_point, ifirst=first_atom, &
ilast=first_atom + natom - 1)
dipole = 0.0_dp
IF (do_berry) THEN
rcc = pbc(rcc, cell)
! Find out the total charge of the molecule
DO iatom = 1, natom
i = first_atom + iatom - 1
atomic_kind => particle_set(i)%atomic_kind
CALL get_atomic_kind(atomic_kind, kind_number=akind)
CALL get_qs_kind(qs_kind_set(akind), ghost=ghost, floating=floating)
IF (.NOT. ghost .AND. .NOT. floating) THEN
CALL get_qs_kind(qs_kind_set(akind), core_charge=zeff)
charge_set(imol_now) = charge_set(imol_now) + zeff
END IF
END DO
! Charges of the wfc involved
DO istate = 1, SIZE(molecule_set(imol_now)%lmi(ispin)%states)
charge_set(imol_now) = charge_set(imol_now) - zwfc
END DO
charge_tot = charge_set(imol_now)
ria = twopi*MATMUL(cell%h_inv, rcc)
zphase = CMPLX(COS(ria), SIN(ria), KIND=dp)**charge_tot
ggamma = CMPLX(1.0_dp, 0.0_dp, KIND=dp)
! Nuclear charges
IF (ispin == 1) THEN
DO iatom = 1, natom
i = first_atom + iatom - 1
atomic_kind => particle_set(i)%atomic_kind
CALL get_atomic_kind(atomic_kind, kind_number=akind)
CALL get_qs_kind(qs_kind_set(akind), ghost=ghost, floating=floating)
IF (.NOT. ghost .AND. .NOT. floating) THEN
CALL get_qs_kind(qs_kind_set(akind), core_charge=zeff)
ria = pbc(particle_set(i)%r, cell)
DO j = 1, 3
gvec = twopi*cell%h_inv(j, :)
theta = SUM(ria(:)*gvec(:))
zeta = CMPLX(COS(theta), SIN(theta), KIND=dp)**(zeff)
ggamma(j) = ggamma(j)*zeta
END DO
END IF
END DO
END IF
! Charges of the wfc involved
DO istate = 1, SIZE(molecule_set(imol_now)%lmi(ispin)%states)
i = molecule_set(imol_now)%lmi(ispin)%states(istate)
ria = pbc(center(1:3, i), cell)
DO j = 1, 3
gvec = twopi*cell%h_inv(j, :)
theta = SUM(ria(:)*gvec(:))
zeta = CMPLX(COS(theta), SIN(theta), KIND=dp)**(-zwfc)
ggamma(j) = ggamma(j)*zeta
END DO
END DO
ggamma = ggamma*zphase
ci = AIMAG(LOG(ggamma))/twopi
dipole = MATMUL(cell%hmat, ci)
ELSE
IF (ispin == 1) THEN
! Nuclear charges
DO iatom = 1, natom
i = first_atom + iatom - 1
atomic_kind => particle_set(i)%atomic_kind
CALL get_atomic_kind(atomic_kind, kind_number=akind)
CALL get_qs_kind(qs_kind_set(akind), ghost=ghost, floating=floating)
IF (.NOT. ghost .AND. .NOT. floating) THEN
CALL get_qs_kind(qs_kind_set(akind), core_charge=zeff)
ria = pbc(particle_set(i)%r, cell) - rcc
dipole = dipole + zeff*(ria - rcc)
charge_set(imol_now) = charge_set(imol_now) + zeff
END IF
END DO
END IF
! Charges of the wfc involved
DO istate = 1, SIZE(molecule_set(imol_now)%lmi(ispin)%states)
i = molecule_set(imol_now)%lmi(ispin)%states(istate)
ria = pbc(center(1:3, i), cell)
dipole = dipole - zwfc*(ria - rcc)
charge_set(imol_now) = charge_set(imol_now) - zwfc
END DO
END IF
dipole_set(:, imol_now) = dipole_set(:, imol_now) + dipole ! a.u.
END DO
END DO
END DO
CALL para_env%sum(dipole_set)
CALL para_env%sum(charge_set)
iounit = cp_print_key_unit_nr(logger, loc_print_key, "MOLECULAR_DIPOLES", &
extension=".MolDip", middle_name="MOLECULAR_DIPOLES")
IF (iounit > 0) THEN
WRITE (UNIT=iounit, FMT='(A80)') &
"# molecule nr, charge, dipole vector, dipole[Debye]"
dipole_set(:, :) = dipole_set(:, :)*debye ! Debye
DO I = 1, SIZE(dipole_set, 2)
WRITE (UNIT=iounit, FMT='(T8,I6,T21,5F12.6)') I, charge_set(I), dipole_set(1:3, I), &
SQRT(DOT_PRODUCT(dipole_set(1:3, I), dipole_set(1:3, I)))
END DO
WRITE (UNIT=iounit, FMT="(T2,A,T61,E20.12)") ' DIPOLE : CheckSum =', SUM(dipole_set)
END IF
CALL cp_print_key_finished_output(iounit, logger, loc_print_key, &
"MOLECULAR_DIPOLES")
DEALLOCATE (dipole_set, charge_set)
END SUBROUTINE calculate_molecular_dipole
!------------------------------------------------------------------------------
END MODULE molecular_dipoles