-
Notifications
You must be signed in to change notification settings - Fork 1
/
lri_ks_methods.F
362 lines (317 loc) · 15.7 KB
/
lri_ks_methods.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief routines that build the Kohn-Sham matrix for the LRIGPW
!> and xc parts
!> \par History
!> 09.2013 created [Dorothea Golze]
!> \author Dorothea Golze
! **************************************************************************************************
MODULE lri_ks_methods
USE atomic_kind_types, ONLY: atomic_kind_type,&
get_atomic_kind_set
USE cp_dbcsr_api, ONLY: dbcsr_add,&
dbcsr_add_block_node,&
dbcsr_finalize,&
dbcsr_get_block_p,&
dbcsr_p_type,&
dbcsr_type
USE kinds, ONLY: dp
USE lri_compression, ONLY: lri_decomp_i
USE lri_environment_types, ONLY: lri_environment_type,&
lri_int_type,&
lri_kind_type
USE qs_neighbor_list_types, ONLY: get_iterator_info,&
neighbor_list_iterate,&
neighbor_list_iterator_create,&
neighbor_list_iterator_p_type,&
neighbor_list_iterator_release,&
neighbor_list_set_p_type
USE qs_o3c_methods, ONLY: contract3_o3c
USE qs_o3c_types, ONLY: get_o3c_vec,&
o3c_vec_create,&
o3c_vec_release,&
o3c_vec_type
USE ri_environment_methods, ONLY: ri_metric_solver
!$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'lri_ks_methods'
PUBLIC :: calculate_lri_ks_matrix, calculate_ri_ks_matrix
CONTAINS
!*****************************************************************************
!> \brief update of LRIGPW KS matrix
!> \param lri_env ...
!> \param lri_v_int integrals of potential * ri basis set
!> \param h_matrix KS matrix, on entry containing the core hamiltonian
!> \param atomic_kind_set ...
!> \param cell_to_index ...
!> \note including this in lri_environment_methods?
! **************************************************************************************************
SUBROUTINE calculate_lri_ks_matrix(lri_env, lri_v_int, h_matrix, atomic_kind_set, cell_to_index)
TYPE(lri_environment_type), POINTER :: lri_env
TYPE(lri_kind_type), DIMENSION(:), POINTER :: lri_v_int
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: h_matrix
TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
INTEGER, DIMENSION(:, :, :), OPTIONAL, POINTER :: cell_to_index
CHARACTER(*), PARAMETER :: routineN = 'calculate_lri_ks_matrix'
INTEGER :: atom_a, atom_b, col, handle, i, iac, iatom, ic, ikind, ilist, jatom, jkind, &
jneighbor, mepos, nba, nbb, nfa, nfb, nkind, nlist, nm, nn, nthread, row
INTEGER, ALLOCATABLE, DIMENSION(:) :: atom_of_kind
INTEGER, DIMENSION(3) :: cell
LOGICAL :: found, trans, use_cell_mapping
REAL(KIND=dp) :: dab, fw, isn, isna, isnb, rab(3), &
threshold
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: vi, via, vib
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: hf_work, hs_work, int3, wab, wbb
REAL(KIND=dp), DIMENSION(:, :), POINTER :: h_block
TYPE(dbcsr_type), POINTER :: hmat
TYPE(lri_int_type), POINTER :: lrii
TYPE(neighbor_list_iterator_p_type), &
DIMENSION(:), POINTER :: nl_iterator
TYPE(neighbor_list_set_p_type), DIMENSION(:), &
POINTER :: soo_list
CALL timeset(routineN, handle)
NULLIFY (h_block, lrii, nl_iterator, soo_list)
threshold = lri_env%eps_o3_int
use_cell_mapping = (SIZE(h_matrix, 1) > 1)
IF (use_cell_mapping) THEN
CPASSERT(PRESENT(cell_to_index))
END IF
IF (ASSOCIATED(lri_env%soo_list)) THEN
soo_list => lri_env%soo_list
nkind = lri_env%lri_ints%nkind
nthread = 1
!$ nthread = omp_get_max_threads()
CALL get_atomic_kind_set(atomic_kind_set=atomic_kind_set, atom_of_kind=atom_of_kind)
CALL neighbor_list_iterator_create(nl_iterator, soo_list, nthread=nthread)
!$OMP PARALLEL DEFAULT(NONE)&
!$OMP SHARED (nthread,nl_iterator,nkind,atom_of_kind,threshold,lri_env,lri_v_int,&
!$OMP h_matrix,use_cell_mapping,cell_to_index)&
!$OMP PRIVATE (mepos,ikind,jkind,iatom,jatom,nlist,ilist,jneighbor,rab,iac,dab,lrii,&
!$OMP nfa,nfb,nba,nbb,nn,hs_work,hf_work,h_block,row,col,trans,found,wab,wbb,&
!$OMP atom_a,atom_b,isn,nm,vi,isna,isnb,via,vib,fw,int3,cell,ic,hmat)
mepos = 0
!$ mepos = omp_get_thread_num()
DO WHILE (neighbor_list_iterate(nl_iterator, mepos) == 0)
CALL get_iterator_info(nl_iterator, mepos=mepos, ikind=ikind, jkind=jkind, iatom=iatom, &
jatom=jatom, nlist=nlist, ilist=ilist, inode=jneighbor, &
r=rab, cell=cell)
iac = ikind + nkind*(jkind - 1)
dab = SQRT(SUM(rab*rab))
IF (.NOT. ASSOCIATED(lri_env%lri_ints%lri_atom(iac)%lri_node)) CYCLE
IF (lri_env%exact_1c_terms) THEN
IF (iatom == jatom .AND. dab < lri_env%delta) CYCLE
END IF
lrii => lri_env%lri_ints%lri_atom(iac)%lri_node(ilist)%lri_int(jneighbor)
nfa = lrii%nfa
nfb = lrii%nfb
nba = lrii%nba
nbb = lrii%nbb
nn = nfa + nfb
atom_a = atom_of_kind(iatom)
atom_b = atom_of_kind(jatom)
IF (use_cell_mapping) THEN
ic = cell_to_index(cell(1), cell(2), cell(3))
CPASSERT(ic > 0)
ELSE
ic = 1
END IF
hmat => h_matrix(ic)%matrix
ALLOCATE (int3(nba, nbb))
IF (lrii%lrisr) THEN
ALLOCATE (hs_work(nba, nbb))
IF (iatom == jatom .AND. dab < lri_env%delta) THEN
nm = nfa
ALLOCATE (vi(nfa))
vi(1:nfa) = lri_v_int(ikind)%v_int(atom_a, 1:nfa)
ELSE
nm = nn
ALLOCATE (vi(nn))
vi(1:nfa) = lri_v_int(ikind)%v_int(atom_a, 1:nfa)
vi(nfa + 1:nn) = lri_v_int(jkind)%v_int(atom_b, 1:nfb)
END IF
isn = SUM(lrii%sn(1:nm)*vi(1:nm))/lrii%nsn
vi(1:nm) = MATMUL(lrii%sinv(1:nm, 1:nm), vi(1:nm)) - isn*lrii%sn(1:nm)
hs_work(1:nba, 1:nbb) = isn*lrii%soo(1:nba, 1:nbb)
IF (iatom == jatom .AND. dab < lri_env%delta) THEN
DO i = 1, nfa
CALL lri_decomp_i(int3, lrii%cabai, i)
hs_work(1:nba, 1:nbb) = hs_work(1:nba, 1:nbb) + vi(i)*int3(1:nba, 1:nbb)
END DO
ELSE
DO i = 1, nfa
CALL lri_decomp_i(int3, lrii%cabai, i)
hs_work(1:nba, 1:nbb) = hs_work(1:nba, 1:nbb) + vi(i)*int3(1:nba, 1:nbb)
END DO
DO i = 1, nfb
CALL lri_decomp_i(int3, lrii%cabbi, i)
hs_work(1:nba, 1:nbb) = hs_work(1:nba, 1:nbb) + vi(nfa + i)*int3(1:nba, 1:nbb)
END DO
END IF
DEALLOCATE (vi)
END IF
IF (lrii%lriff) THEN
ALLOCATE (hf_work(nba, nbb), wab(nba, nbb), wbb(nba, nbb))
wab(1:nba, 1:nbb) = lri_env%wmat(ikind, jkind)%mat(1:nba, 1:nbb)
wbb(1:nba, 1:nbb) = 1.0_dp - lri_env%wmat(ikind, jkind)%mat(1:nba, 1:nbb)
!
ALLOCATE (via(nfa), vib(nfb))
via(1:nfa) = lri_v_int(ikind)%v_int(atom_a, 1:nfa)
vib(1:nfb) = lri_v_int(jkind)%v_int(atom_b, 1:nfb)
!
isna = SUM(lrii%sna(1:nfa)*via(1:nfa))/lrii%nsna
isnb = SUM(lrii%snb(1:nfb)*vib(1:nfb))/lrii%nsnb
via(1:nfa) = MATMUL(lrii%asinv(1:nfa, 1:nfa), via(1:nfa)) - isna*lrii%sna(1:nfa)
vib(1:nfb) = MATMUL(lrii%bsinv(1:nfb, 1:nfb), vib(1:nfb)) - isnb*lrii%snb(1:nfb)
!
hf_work(1:nba, 1:nbb) = (isna*wab(1:nba, 1:nbb) + isnb*wbb(1:nba, 1:nbb))*lrii%soo(1:nba, 1:nbb)
!
DO i = 1, nfa
IF (lrii%abascr(i) > threshold) THEN
CALL lri_decomp_i(int3, lrii%cabai, i)
hf_work(1:nba, 1:nbb) = hf_work(1:nba, 1:nbb) + &
via(i)*int3(1:nba, 1:nbb)*wab(1:nba, 1:nbb)
END IF
END DO
DO i = 1, nfb
IF (lrii%abbscr(i) > threshold) THEN
CALL lri_decomp_i(int3, lrii%cabbi, i)
hf_work(1:nba, 1:nbb) = hf_work(1:nba, 1:nbb) + &
vib(i)*int3(1:nba, 1:nbb)*wbb(1:nba, 1:nbb)
END IF
END DO
!
DEALLOCATE (via, vib, wab, wbb)
END IF
DEALLOCATE (int3)
! add h_work to core hamiltonian
IF (iatom <= jatom) THEN
row = iatom
col = jatom
trans = .FALSE.
ELSE
row = jatom
col = iatom
trans = .TRUE.
END IF
!$OMP CRITICAL(addhamiltonian)
NULLIFY (h_block)
CALL dbcsr_get_block_p(hmat, row, col, h_block, found)
IF (.NOT. ASSOCIATED(h_block)) THEN
CALL dbcsr_add_block_node(hmat, row, col, h_block)
END IF
IF (lrii%lrisr) THEN
fw = lrii%wsr
IF (trans) THEN
h_block(1:nbb, 1:nba) = h_block(1:nbb, 1:nba) + fw*TRANSPOSE(hs_work(1:nba, 1:nbb))
ELSE
h_block(1:nba, 1:nbb) = h_block(1:nba, 1:nbb) + fw*hs_work(1:nba, 1:nbb)
END IF
END IF
IF (lrii%lriff) THEN
fw = lrii%wff
IF (trans) THEN
h_block(1:nbb, 1:nba) = h_block(1:nbb, 1:nba) + fw*TRANSPOSE(hf_work(1:nba, 1:nbb))
ELSE
h_block(1:nba, 1:nbb) = h_block(1:nba, 1:nbb) + fw*hf_work(1:nba, 1:nbb)
END IF
END IF
!$OMP END CRITICAL(addhamiltonian)
IF (lrii%lrisr) DEALLOCATE (hs_work)
IF (lrii%lriff) DEALLOCATE (hf_work)
END DO
!$OMP END PARALLEL
DO ic = 1, SIZE(h_matrix, 1)
CALL dbcsr_finalize(h_matrix(ic)%matrix)
END DO
CALL neighbor_list_iterator_release(nl_iterator)
END IF
CALL timestop(handle)
END SUBROUTINE calculate_lri_ks_matrix
!*****************************************************************************
!> \brief update of RIGPW KS matrix
!> \param lri_env ...
!> \param lri_v_int integrals of potential * ri basis set
!> \param h_matrix KS matrix, on entry containing the core hamiltonian
!> \param s_matrix overlap matrix
!> \param atomic_kind_set ...
!> \param ispin ...
!> \note including this in lri_environment_methods?
! **************************************************************************************************
SUBROUTINE calculate_ri_ks_matrix(lri_env, lri_v_int, h_matrix, s_matrix, &
atomic_kind_set, ispin)
TYPE(lri_environment_type), POINTER :: lri_env
TYPE(lri_kind_type), DIMENSION(:), POINTER :: lri_v_int
TYPE(dbcsr_type), POINTER :: h_matrix, s_matrix
TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
INTEGER, INTENT(IN) :: ispin
CHARACTER(*), PARAMETER :: routineN = 'calculate_ri_ks_matrix'
INTEGER :: atom_a, handle, i1, i2, iatom, ikind, n, &
natom, nbas
INTEGER, ALLOCATABLE, DIMENSION(:) :: atom_of_kind, kind_of, nsize
INTEGER, DIMENSION(:, :), POINTER :: bas_ptr
REAL(KIND=dp) :: fscal, ftrm1n
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: fout, fvec
REAL(KIND=dp), DIMENSION(:), POINTER :: v
TYPE(o3c_vec_type), DIMENSION(:), POINTER :: o3c_vec
CALL timeset(routineN, handle)
bas_ptr => lri_env%ri_fit%bas_ptr
natom = SIZE(bas_ptr, 2)
nbas = bas_ptr(2, natom)
ALLOCATE (fvec(nbas), fout(nbas))
CALL get_atomic_kind_set(atomic_kind_set, atom_of_kind=atom_of_kind, kind_of=kind_of)
DO iatom = 1, natom
ikind = kind_of(iatom)
atom_a = atom_of_kind(iatom)
i1 = bas_ptr(1, iatom)
i2 = bas_ptr(2, iatom)
n = i2 - i1 + 1
fvec(i1:i2) = lri_v_int(ikind)%v_int(atom_a, 1:n)
END DO
! f(T) * R^(-1)*n
ftrm1n = SUM(fvec(:)*lri_env%ri_fit%rm1n(:))
lri_env%ri_fit%ftrm1n(ispin) = ftrm1n
fscal = ftrm1n/lri_env%ri_fit%ntrm1n
! renormalize fvec -> fvec - fscal * n
fvec(:) = fvec(:) - fscal*lri_env%ri_fit%nvec(:)
! solve Rx=f'
CALL ri_metric_solver(mat=lri_env%ri_smat(1)%matrix, &
vecr=fvec(:), &
vecx=fout(:), &
matp=lri_env%ri_sinv(1)%matrix, &
solver=lri_env%ri_sinv_app, &
ptr=bas_ptr)
lri_env%ri_fit%fout(:, ispin) = fout(:)
! add overlap matrix contribution
CALL dbcsr_add(h_matrix, s_matrix, 1.0_dp, fscal)
! create a o3c_vec from fout
ALLOCATE (nsize(natom), o3c_vec(natom))
DO iatom = 1, natom
i1 = bas_ptr(1, iatom)
i2 = bas_ptr(2, iatom)
n = i2 - i1 + 1
nsize(iatom) = n
END DO
CALL o3c_vec_create(o3c_vec, nsize)
DEALLOCATE (nsize)
DO iatom = 1, natom
i1 = bas_ptr(1, iatom)
i2 = bas_ptr(2, iatom)
n = i2 - i1 + 1
CALL get_o3c_vec(o3c_vec, iatom, v)
v(1:n) = fout(i1:i2)
END DO
! add <T.f'>
CALL contract3_o3c(lri_env%o3c, o3c_vec, h_matrix)
!
CALL o3c_vec_release(o3c_vec)
DEALLOCATE (o3c_vec, fvec, fout)
CALL timestop(handle)
END SUBROUTINE calculate_ri_ks_matrix
END MODULE lri_ks_methods