-
Notifications
You must be signed in to change notification settings - Fork 1
/
hfx_pair_list_methods.F
728 lines (661 loc) · 33 KB
/
hfx_pair_list_methods.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Routines for optimizing load balance between processes in HFX calculations
!> \par History
!> 04.2008 created [Manuel Guidon]
!> 11.2019 fixed initial value for potential_id (A. Bussy)
!> \author Manuel Guidon
! **************************************************************************************************
MODULE hfx_pair_list_methods
USE cell_types, ONLY: cell_type,&
pbc
USE gamma, ONLY: fgamma => fgamma_0
USE hfx_types, ONLY: &
hfx_basis_type, hfx_block_range_type, hfx_cell_type, hfx_pgf_list, hfx_pgf_product_list, &
hfx_potential_type, hfx_screen_coeff_type, pair_list_type, pair_set_list_type
USE input_constants, ONLY: &
do_potential_TShPSC, do_potential_coulomb, do_potential_gaussian, do_potential_id, &
do_potential_long, do_potential_mix_cl, do_potential_mix_cl_trunc, do_potential_mix_lg, &
do_potential_short, do_potential_truncated
USE kinds, ONLY: dp
USE libint_wrapper, ONLY: prim_data_f_size
USE mathconstants, ONLY: pi
USE mp2_types, ONLY: pair_list_type_mp2
USE particle_types, ONLY: particle_type
USE t_c_g0, ONLY: t_c_g0_n
USE t_sh_p_s_c, ONLY: trunc_CS_poly_n20
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
PUBLIC :: build_pair_list, &
build_pair_list_mp2, &
build_pair_list_pgf, &
build_pgf_product_list, &
build_atomic_pair_list, &
pgf_product_list_size
! an initial estimate for the size of the product list
INTEGER, SAVE :: pgf_product_list_size = 128
!***
CONTAINS
! **************************************************************************************************
!> \brief ...
!> \param list1 ...
!> \param list2 ...
!> \param product_list ...
!> \param nproducts ...
!> \param log10_pmax ...
!> \param log10_eps_schwarz ...
!> \param neighbor_cells ...
!> \param cell ...
!> \param potential_parameter ...
!> \param m_max ...
!> \param do_periodic ...
! **************************************************************************************************
SUBROUTINE build_pgf_product_list(list1, list2, product_list, nproducts, &
log10_pmax, log10_eps_schwarz, neighbor_cells, &
cell, potential_parameter, m_max, do_periodic)
TYPE(hfx_pgf_list) :: list1, list2
TYPE(hfx_pgf_product_list), ALLOCATABLE, &
DIMENSION(:), INTENT(INOUT) :: product_list
INTEGER, INTENT(OUT) :: nproducts
REAL(dp), INTENT(IN) :: log10_pmax, log10_eps_schwarz
TYPE(hfx_cell_type), DIMENSION(:), POINTER :: neighbor_cells
TYPE(cell_type), POINTER :: cell
TYPE(hfx_potential_type) :: potential_parameter
INTEGER, INTENT(IN) :: m_max
LOGICAL, INTENT(IN) :: do_periodic
INTEGER :: i, j, k, l, nimages1, nimages2, tmp_i4
LOGICAL :: use_gamma
REAL(dp) :: C11(3), den, Eta, EtaInv, factor, Fm(prim_data_f_size), G(3), num, omega2, &
omega_corr, omega_corr2, P(3), pgf_max_1, pgf_max_2, PQ(3), Q(3), R, R1, R2, ra(3), &
rb(3), rc(3), rd(3), Rho, RhoInv, rpq2, S1234, S1234a, S1234b, shift(3), ssss, T, &
temp(3), temp_CC(3), temp_DD(3), tmp, tmp_D(3), W(3), Zeta1, Zeta_C, Zeta_D, ZetapEtaInv
TYPE(hfx_pgf_product_list), ALLOCATABLE, &
DIMENSION(:) :: tmp_product_list
nimages1 = list1%nimages
nimages2 = list2%nimages
nproducts = 0
Zeta1 = list1%zetapzetb
Eta = list2%zetapzetb
EtaInv = list2%ZetaInv
Zeta_C = list2%zeta
Zeta_D = list2%zetb
temp_CC = 0.0_dp
temp_DD = 0.0_dp
DO i = 1, nimages1
P = list1%image_list(i)%P
R1 = list1%image_list(i)%R
S1234a = list1%image_list(i)%S1234
pgf_max_1 = list1%image_list(i)%pgf_max
ra = list1%image_list(i)%ra
rb = list1%image_list(i)%rb
DO j = 1, nimages2
pgf_max_2 = list2%image_list(j)%pgf_max
IF (pgf_max_1 + pgf_max_2 + log10_pmax < log10_eps_schwarz) CYCLE
Q = list2%image_list(j)%P
R2 = list2%image_list(j)%R
S1234b = list2%image_list(j)%S1234
rc = list2%image_list(j)%ra
rd = list2%image_list(j)%rb
ZetapEtaInv = Zeta1 + Eta
ZetapEtaInv = 1.0_dp/ZetapEtaInv
Rho = Zeta1*Eta*ZetapEtaInv
RhoInv = 1.0_dp/Rho
S1234 = EXP(S1234a + S1234b)
IF (do_periodic) THEN
temp = P - Q
PQ = pbc(temp, cell)
shift = -PQ + temp
temp_CC = rc + shift
temp_DD = rd + shift
END IF
DO k = 1, SIZE(neighbor_cells)
IF (do_periodic) THEN
C11 = temp_CC + neighbor_cells(k)%cell_r(:)
tmp_D = temp_DD + neighbor_cells(k)%cell_r(:)
ELSE
C11 = rc
tmp_D = rd
END IF
Q = (Zeta_C*C11 + Zeta_D*tmp_D)*EtaInv
rpq2 = (P(1) - Q(1))**2 + (P(2) - Q(2))**2 + (P(3) - Q(3))**2
IF (potential_parameter%potential_type == do_potential_truncated .OR. &
potential_parameter%potential_type == do_potential_short .OR. &
potential_parameter%potential_type == do_potential_mix_cl_trunc) THEN
IF (rpq2 > (R1 + R2 + potential_parameter%cutoff_radius)**2) CYCLE
END IF
IF (potential_parameter%potential_type == do_potential_TShPSC) THEN
IF (rpq2 > (R1 + R2 + potential_parameter%cutoff_radius*2.0_dp)**2) CYCLE
END IF
nproducts = nproducts + 1
! allocate size as needed,
! updating the global size estimate to make this a rare event in longer simulations
IF (nproducts > SIZE(product_list)) THEN
!$OMP ATOMIC READ
tmp_i4 = pgf_product_list_size
tmp_i4 = MAX(pgf_product_list_size, (3*nproducts + 1)/2)
!$OMP ATOMIC WRITE
pgf_product_list_size = tmp_i4
ALLOCATE (tmp_product_list(SIZE(product_list)))
tmp_product_list(:) = product_list
DEALLOCATE (product_list)
ALLOCATE (product_list(tmp_i4))
product_list(1:SIZE(tmp_product_list)) = tmp_product_list
DEALLOCATE (tmp_product_list)
END IF
T = Rho*rpq2
SELECT CASE (potential_parameter%potential_type)
CASE (do_potential_truncated)
R = potential_parameter%cutoff_radius*SQRT(Rho)
CALL t_c_g0_n(product_list(nproducts)%Fm(1), use_gamma, R, T, m_max)
IF (use_gamma) CALL fgamma(m_max, T, product_list(nproducts)%Fm(1))
factor = 2.0_dp*Pi*RhoInv
CASE (do_potential_TShPSC)
R = potential_parameter%cutoff_radius*SQRT(Rho)
product_list(nproducts)%Fm = 0.0_dp
CALL trunc_CS_poly_n20(product_list(nproducts)%Fm(1), R, T, m_max)
factor = 2.0_dp*Pi*RhoInv
CASE (do_potential_coulomb)
CALL fgamma(m_max, T, product_list(nproducts)%Fm(1))
factor = 2.0_dp*Pi*RhoInv
CASE (do_potential_short)
CALL fgamma(m_max, T, product_list(nproducts)%Fm(1))
omega2 = potential_parameter%omega**2
omega_corr2 = omega2/(omega2 + Rho)
omega_corr = SQRT(omega_corr2)
T = T*omega_corr2
CALL fgamma(m_max, T, Fm)
tmp = -omega_corr
DO l = 1, m_max + 1
product_list(nproducts)%Fm(l) = product_list(nproducts)%Fm(l) + Fm(l)*tmp
tmp = tmp*omega_corr2
END DO
factor = 2.0_dp*Pi*RhoInv
CASE (do_potential_long)
omega2 = potential_parameter%omega**2
omega_corr2 = omega2/(omega2 + Rho)
omega_corr = SQRT(omega_corr2)
T = T*omega_corr2
CALL fgamma(m_max, T, product_list(nproducts)%Fm(1))
tmp = omega_corr
DO l = 1, m_max + 1
product_list(nproducts)%Fm(l) = product_list(nproducts)%Fm(l)*tmp
tmp = tmp*omega_corr2
END DO
factor = 2.0_dp*Pi*RhoInv
CASE (do_potential_mix_cl)
CALL fgamma(m_max, T, product_list(nproducts)%Fm(1))
omega2 = potential_parameter%omega**2
omega_corr2 = omega2/(omega2 + Rho)
omega_corr = SQRT(omega_corr2)
T = T*omega_corr2
CALL fgamma(m_max, T, Fm)
tmp = omega_corr
DO l = 1, m_max + 1
product_list(nproducts)%Fm(l) = &
product_list(nproducts)%Fm(l)*potential_parameter%scale_coulomb &
+ Fm(l)*tmp*potential_parameter%scale_longrange
tmp = tmp*omega_corr2
END DO
factor = 2.0_dp*Pi*RhoInv
CASE (do_potential_mix_cl_trunc)
! truncated
R = potential_parameter%cutoff_radius*SQRT(rho)
CALL t_c_g0_n(product_list(nproducts)%Fm(1), use_gamma, R, T, m_max)
IF (use_gamma) CALL fgamma(m_max, T, product_list(nproducts)%Fm(1))
! Coulomb
CALL fgamma(m_max, T, Fm)
DO l = 1, m_max + 1
product_list(nproducts)%Fm(l) = product_list(nproducts)%Fm(l)* &
(potential_parameter%scale_coulomb + potential_parameter%scale_longrange) - &
Fm(l)*potential_parameter%scale_longrange
END DO
! longrange
omega2 = potential_parameter%omega**2
omega_corr2 = omega2/(omega2 + Rho)
omega_corr = SQRT(omega_corr2)
T = T*omega_corr2
CALL fgamma(m_max, T, Fm)
tmp = omega_corr
DO l = 1, m_max + 1
product_list(nproducts)%Fm(l) = product_list(nproducts)%Fm(l) + Fm(l)*tmp*potential_parameter%scale_longrange
tmp = tmp*omega_corr2
END DO
factor = 2.0_dp*Pi*RhoInv
CASE (do_potential_gaussian)
omega2 = potential_parameter%omega**2
T = -omega2*T/(Rho + omega2)
tmp = 1.0_dp
DO l = 1, m_max + 1
product_list(nproducts)%Fm(l) = EXP(T)*tmp
tmp = tmp*omega2/(Rho + omega2)
END DO
factor = (Pi/(Rho + omega2))**(1.5_dp)
CASE (do_potential_mix_lg)
omega2 = potential_parameter%omega**2
omega_corr2 = omega2/(omega2 + Rho)
omega_corr = SQRT(omega_corr2)
T = T*omega_corr2
CALL fgamma(m_max, T, Fm)
tmp = omega_corr*2.0_dp*Pi*RhoInv*potential_parameter%scale_longrange
DO l = 1, m_max + 1
Fm(l) = Fm(l)*tmp
tmp = tmp*omega_corr2
END DO
T = Rho*rpq2
T = -omega2*T/(Rho + omega2)
tmp = (Pi/(Rho + omega2))**(1.5_dp)*potential_parameter%scale_gaussian
DO l = 1, m_max + 1
product_list(nproducts)%Fm(l) = EXP(T)*tmp + Fm(l)
tmp = tmp*omega2/(Rho + omega2)
END DO
factor = 1.0_dp
CASE (do_potential_id)
num = list1%zeta*list1%zetb
den = list1%zeta + list1%zetb
ssss = -num/den*SUM((ra - rb)**2)
num = den*Zeta_C
den = den + Zeta_C
ssss = ssss - num/den*SUM((P - rc)**2)
G(:) = (list1%zeta*ra(:) + list1%zetb*rb(:) + Zeta_C*rc(:))/den
num = den*Zeta_D
den = den + Zeta_D
ssss = ssss - num/den*SUM((G - rd)**2)
product_list(nproducts)%Fm(:) = EXP(ssss)
factor = 1.0_dp
IF (S1234 > EPSILON(0.0_dp)) factor = 1.0_dp/S1234
END SELECT
tmp = (Pi*ZetapEtaInv)**3
factor = factor*S1234*SQRT(tmp)
DO l = 1, m_max + 1
product_list(nproducts)%Fm(l) = product_list(nproducts)%Fm(l)*factor
END DO
W = (Zeta1*P + Eta*Q)*ZetapEtaInv
product_list(nproducts)%ra = ra
product_list(nproducts)%rb = rb
product_list(nproducts)%rc = C11
product_list(nproducts)%rd = tmp_D
product_list(nproducts)%ZetapEtaInv = ZetapEtaInv
product_list(nproducts)%Rho = Rho
product_list(nproducts)%RhoInv = RhoInv
product_list(nproducts)%P = P
product_list(nproducts)%Q = Q
product_list(nproducts)%W = W
product_list(nproducts)%AB = ra - rb
product_list(nproducts)%CD = C11 - tmp_D
END DO
END DO
END DO
END SUBROUTINE build_pgf_product_list
! **************************************************************************************************
!> \brief ...
!> \param npgfa ...
!> \param npgfb ...
!> \param list ...
!> \param zeta ...
!> \param zetb ...
!> \param screen1 ...
!> \param screen2 ...
!> \param pgf ...
!> \param R_pgf ...
!> \param log10_pmax ...
!> \param log10_eps_schwarz ...
!> \param ra ...
!> \param rb ...
!> \param nelements ...
!> \param neighbor_cells ...
!> \param nimages ...
!> \param do_periodic ...
! **************************************************************************************************
SUBROUTINE build_pair_list_pgf(npgfa, npgfb, list, zeta, zetb, screen1, screen2, pgf, R_pgf, &
log10_pmax, log10_eps_schwarz, ra, rb, nelements, &
neighbor_cells, nimages, do_periodic)
INTEGER, INTENT(IN) :: npgfa, npgfb
TYPE(hfx_pgf_list), DIMENSION(npgfa*npgfb) :: list
REAL(dp), DIMENSION(1:npgfa), INTENT(IN) :: zeta
REAL(dp), DIMENSION(1:npgfb), INTENT(IN) :: zetb
REAL(dp), INTENT(IN) :: screen1(2), screen2(2)
TYPE(hfx_screen_coeff_type), DIMENSION(:, :), &
POINTER :: pgf, R_pgf
REAL(dp), INTENT(IN) :: log10_pmax, log10_eps_schwarz, ra(3), &
rb(3)
INTEGER, INTENT(OUT) :: nelements
TYPE(hfx_cell_type), DIMENSION(:), POINTER :: neighbor_cells
INTEGER :: nimages(npgfa*npgfb)
LOGICAL, INTENT(IN) :: do_periodic
INTEGER :: element_counter, i, ipgf, j, jpgf
REAL(dp) :: AB(3), im_B(3), pgf_max, rab2, Zeta1, &
Zeta_A, Zeta_B, ZetaInv
nimages = 0
! ** inner loop may never be reached
nelements = npgfa*npgfb
DO i = 1, SIZE(neighbor_cells)
IF (do_periodic) THEN
im_B = rb + neighbor_cells(i)%cell_r(:)
ELSE
im_B = rb
END IF
AB = ra - im_B
rab2 = AB(1)**2 + AB(2)**2 + AB(3)**2
IF (screen1(1)*rab2 + screen1(2) + screen2(2) + log10_pmax < log10_eps_schwarz) CYCLE
element_counter = 0
DO ipgf = 1, npgfa
DO jpgf = 1, npgfb
element_counter = element_counter + 1
pgf_max = pgf(jpgf, ipgf)%x(1)*rab2 + pgf(jpgf, ipgf)%x(2)
IF (pgf_max + screen2(2) + log10_pmax < log10_eps_schwarz) THEN
CYCLE
END IF
nimages(element_counter) = nimages(element_counter) + 1
list(element_counter)%image_list(nimages(element_counter))%pgf_max = pgf_max
list(element_counter)%image_list(nimages(element_counter))%ra = ra
list(element_counter)%image_list(nimages(element_counter))%rb = im_B
list(element_counter)%image_list(nimages(element_counter))%rab2 = rab2
Zeta_A = zeta(ipgf)
Zeta_B = zetb(jpgf)
Zeta1 = Zeta_A + Zeta_B
ZetaInv = 1.0_dp/Zeta1
IF (nimages(element_counter) == 1) THEN
list(element_counter)%ipgf = ipgf
list(element_counter)%jpgf = jpgf
list(element_counter)%zetaInv = ZetaInv
list(element_counter)%zetapzetb = Zeta1
list(element_counter)%zeta = Zeta_A
list(element_counter)%zetb = Zeta_B
END IF
list(element_counter)%image_list(nimages(element_counter))%S1234 = (-Zeta_A*Zeta_B*ZetaInv*rab2)
list(element_counter)%image_list(nimages(element_counter))%P = (Zeta_A*ra + Zeta_B*im_B)*ZetaInv
list(element_counter)%image_list(nimages(element_counter))%R = &
MAX(0.0_dp, R_pgf(jpgf, ipgf)%x(1)*rab2 + R_pgf(jpgf, ipgf)%x(2))
list(element_counter)%image_list(nimages(element_counter))%ra = ra
list(element_counter)%image_list(nimages(element_counter))%rb = im_B
list(element_counter)%image_list(nimages(element_counter))%rab2 = rab2
list(element_counter)%image_list(nimages(element_counter))%bcell = neighbor_cells(i)%cell
END DO
END DO
nelements = MAX(nelements, element_counter)
END DO
DO j = 1, nelements
list(j)%nimages = nimages(j)
END DO
! ** Remove unused elements
element_counter = 0
DO j = 1, nelements
IF (list(j)%nimages == 0) CYCLE
element_counter = element_counter + 1
list(element_counter)%nimages = list(j)%nimages
list(element_counter)%zetapzetb = list(j)%zetapzetb
list(element_counter)%ZetaInv = list(j)%ZetaInv
list(element_counter)%zeta = list(j)%zeta
list(element_counter)%zetb = list(j)%zetb
list(element_counter)%ipgf = list(j)%ipgf
list(element_counter)%jpgf = list(j)%jpgf
DO i = 1, list(j)%nimages
list(element_counter)%image_list(i) = list(j)%image_list(i)
END DO
END DO
nelements = element_counter
END SUBROUTINE build_pair_list_pgf
! **************************************************************************************************
!> \brief ...
!> \param natom ...
!> \param list ...
!> \param set_list ...
!> \param i_start ...
!> \param i_end ...
!> \param j_start ...
!> \param j_end ...
!> \param kind_of ...
!> \param basis_parameter ...
!> \param particle_set ...
!> \param do_periodic ...
!> \param coeffs_set ...
!> \param coeffs_kind ...
!> \param coeffs_kind_max0 ...
!> \param log10_eps_schwarz ...
!> \param cell ...
!> \param pmax_blocks ...
!> \param atomic_pair_list ...
! **************************************************************************************************
SUBROUTINE build_pair_list(natom, list, set_list, i_start, i_end, j_start, j_end, kind_of, basis_parameter, particle_set, &
do_periodic, coeffs_set, coeffs_kind, coeffs_kind_max0, log10_eps_schwarz, cell, &
pmax_blocks, atomic_pair_list)
INTEGER, INTENT(IN) :: natom
TYPE(pair_list_type), INTENT(OUT) :: list
TYPE(pair_set_list_type), DIMENSION(:), &
INTENT(OUT) :: set_list
INTEGER, INTENT(IN) :: i_start, i_end, j_start, j_end, &
kind_of(*)
TYPE(hfx_basis_type), DIMENSION(:), INTENT(IN), &
POINTER :: basis_parameter
TYPE(particle_type), DIMENSION(:), INTENT(IN), &
POINTER :: particle_set
LOGICAL, INTENT(IN) :: do_periodic
TYPE(hfx_screen_coeff_type), &
DIMENSION(:, :, :, :), INTENT(IN), POINTER :: coeffs_set
TYPE(hfx_screen_coeff_type), DIMENSION(:, :), &
INTENT(IN) :: coeffs_kind
REAL(KIND=dp), INTENT(IN) :: coeffs_kind_max0, log10_eps_schwarz
TYPE(cell_type), POINTER :: cell
REAL(dp), INTENT(IN) :: pmax_blocks
LOGICAL, DIMENSION(natom, natom), INTENT(IN) :: atomic_pair_list
INTEGER :: iatom, ikind, iset, jatom, jkind, jset, &
n_element, nset_ij, nseta, nsetb
REAL(KIND=dp) :: rab2
REAL(KIND=dp), DIMENSION(3) :: B11, pbc_B, ra, rb, temp
n_element = 0
nset_ij = 0
DO iatom = i_start, i_end
DO jatom = j_start, j_end
IF (atomic_pair_list(jatom, iatom) .EQV. .FALSE.) CYCLE
ikind = kind_of(iatom)
nseta = basis_parameter(ikind)%nset
ra = particle_set(iatom)%r(:)
IF (jatom < iatom) CYCLE
jkind = kind_of(jatom)
nsetb = basis_parameter(jkind)%nset
rb = particle_set(jatom)%r(:)
IF (do_periodic) THEN
temp = rb - ra
pbc_B = pbc(temp, cell)
B11 = ra + pbc_B
rab2 = (ra(1) - B11(1))**2 + (ra(2) - B11(2))**2 + (ra(3) - B11(3))**2
ELSE
rab2 = (ra(1) - rb(1))**2 + (ra(2) - rb(2))**2 + (ra(3) - rb(3))**2
B11 = rb ! ra - rb
END IF
IF ((coeffs_kind(jkind, ikind)%x(1)*rab2 + &
coeffs_kind(jkind, ikind)%x(2)) + coeffs_kind_max0 + pmax_blocks < log10_eps_schwarz) CYCLE
n_element = n_element + 1
list%elements(n_element)%pair = (/iatom, jatom/)
list%elements(n_element)%kind_pair = (/ikind, jkind/)
list%elements(n_element)%r1 = ra
list%elements(n_element)%r2 = B11
list%elements(n_element)%dist2 = rab2
! build a list of guaranteed overlapping sets
list%elements(n_element)%set_bounds(1) = nset_ij + 1
DO iset = 1, nseta
DO jset = 1, nsetb
IF (coeffs_set(jset, iset, jkind, ikind)%x(1)*rab2 + coeffs_set(jset, iset, jkind, ikind)%x(2) + &
coeffs_kind_max0 + pmax_blocks < log10_eps_schwarz) CYCLE
nset_ij = nset_ij + 1
set_list(nset_ij)%pair = (/iset, jset/)
END DO
END DO
list%elements(n_element)%set_bounds(2) = nset_ij
END DO
END DO
list%n_element = n_element
END SUBROUTINE build_pair_list
! **************************************************************************************************
!> \brief ...
!> \param natom ...
!> \param atomic_pair_list ...
!> \param kind_of ...
!> \param basis_parameter ...
!> \param particle_set ...
!> \param do_periodic ...
!> \param coeffs_kind ...
!> \param coeffs_kind_max0 ...
!> \param log10_eps_schwarz ...
!> \param cell ...
!> \param blocks ...
! **************************************************************************************************
SUBROUTINE build_atomic_pair_list(natom, atomic_pair_list, kind_of, basis_parameter, particle_set, &
do_periodic, coeffs_kind, coeffs_kind_max0, log10_eps_schwarz, cell, &
blocks)
INTEGER, INTENT(IN) :: natom
LOGICAL, DIMENSION(natom, natom) :: atomic_pair_list
INTEGER, INTENT(IN) :: kind_of(*)
TYPE(hfx_basis_type), DIMENSION(:), INTENT(IN), &
POINTER :: basis_parameter
TYPE(particle_type), DIMENSION(:), INTENT(IN), &
POINTER :: particle_set
LOGICAL, INTENT(IN) :: do_periodic
TYPE(hfx_screen_coeff_type), DIMENSION(:, :), &
INTENT(IN) :: coeffs_kind
REAL(KIND=dp), INTENT(IN) :: coeffs_kind_max0, log10_eps_schwarz
TYPE(cell_type), POINTER :: cell
TYPE(hfx_block_range_type), DIMENSION(:), &
INTENT(IN), POINTER :: blocks
INTEGER :: iatom, iatom_end, iatom_start, iblock, &
ikind, jatom, jatom_end, jatom_start, &
jblock, jkind, nseta, nsetb
REAL(KIND=dp) :: rab2
REAL(KIND=dp), DIMENSION(3) :: B11, pbc_B, ra, rb, temp
atomic_pair_list = .FALSE.
DO iblock = 1, SIZE(blocks)
iatom_start = blocks(iblock)%istart
iatom_end = blocks(iblock)%iend
DO jblock = 1, SIZE(blocks)
jatom_start = blocks(jblock)%istart
jatom_end = blocks(jblock)%iend
DO iatom = iatom_start, iatom_end
ikind = kind_of(iatom)
nseta = basis_parameter(ikind)%nset
ra = particle_set(iatom)%r(:)
DO jatom = jatom_start, jatom_end
IF (jatom < iatom) CYCLE
jkind = kind_of(jatom)
nsetb = basis_parameter(jkind)%nset
rb = particle_set(jatom)%r(:)
IF (do_periodic) THEN
temp = rb - ra
pbc_B = pbc(temp, cell)
B11 = ra + pbc_B
rab2 = (ra(1) - B11(1))**2 + (ra(2) - B11(2))**2 + (ra(3) - B11(3))**2
ELSE
rab2 = (ra(1) - rb(1))**2 + (ra(2) - rb(2))**2 + (ra(3) - rb(3))**2
B11 = rb ! ra - rb
END IF
IF ((coeffs_kind(jkind, ikind)%x(1)*rab2 + &
coeffs_kind(jkind, ikind)%x(2)) + coeffs_kind_max0 < log10_eps_schwarz) CYCLE
atomic_pair_list(jatom, iatom) = .TRUE.
atomic_pair_list(iatom, jatom) = .TRUE.
END DO
END DO
END DO
END DO
END SUBROUTINE build_atomic_pair_list
! **************************************************************************************************
!> \brief ...
!> \param natom ...
!> \param list ...
!> \param set_list ...
!> \param i_start ...
!> \param i_end ...
!> \param j_start ...
!> \param j_end ...
!> \param kind_of ...
!> \param basis_parameter ...
!> \param particle_set ...
!> \param do_periodic ...
!> \param coeffs_set ...
!> \param coeffs_kind ...
!> \param coeffs_kind_max0 ...
!> \param log10_eps_schwarz ...
!> \param cell ...
!> \param pmax_blocks ...
!> \param atomic_pair_list ...
!> \param skip_atom_symmetry ...
! **************************************************************************************************
SUBROUTINE build_pair_list_mp2(natom, list, set_list, i_start, i_end, j_start, j_end, kind_of, basis_parameter, particle_set, &
do_periodic, coeffs_set, coeffs_kind, coeffs_kind_max0, log10_eps_schwarz, cell, &
pmax_blocks, atomic_pair_list, skip_atom_symmetry)
INTEGER, INTENT(IN) :: natom
TYPE(pair_list_type_mp2) :: list
TYPE(pair_set_list_type), DIMENSION(:), &
INTENT(OUT) :: set_list
INTEGER, INTENT(IN) :: i_start, i_end, j_start, j_end, &
kind_of(*)
TYPE(hfx_basis_type), DIMENSION(:), INTENT(IN), &
POINTER :: basis_parameter
TYPE(particle_type), DIMENSION(:), INTENT(IN), &
POINTER :: particle_set
LOGICAL, INTENT(IN) :: do_periodic
TYPE(hfx_screen_coeff_type), &
DIMENSION(:, :, :, :), INTENT(IN), POINTER :: coeffs_set
TYPE(hfx_screen_coeff_type), DIMENSION(:, :), &
INTENT(IN) :: coeffs_kind
REAL(KIND=dp), INTENT(IN) :: coeffs_kind_max0, log10_eps_schwarz
TYPE(cell_type), POINTER :: cell
REAL(dp), INTENT(IN) :: pmax_blocks
LOGICAL, DIMENSION(natom, natom), INTENT(IN) :: atomic_pair_list
LOGICAL, INTENT(IN), OPTIONAL :: skip_atom_symmetry
INTEGER :: iatom, ikind, iset, jatom, jkind, jset, &
n_element, nset_ij, nseta, nsetb
LOGICAL :: my_skip_atom_symmetry
REAL(KIND=dp) :: rab2
REAL(KIND=dp), DIMENSION(3) :: B11, pbc_B, ra, rb, temp
n_element = 0
nset_ij = 0
my_skip_atom_symmetry = .FALSE.
IF (PRESENT(skip_atom_symmetry)) my_skip_atom_symmetry = skip_atom_symmetry
DO iatom = i_start, i_end
DO jatom = j_start, j_end
IF (atomic_pair_list(jatom, iatom) .EQV. .FALSE.) CYCLE
ikind = kind_of(iatom)
nseta = basis_parameter(ikind)%nset
ra = particle_set(iatom)%r(:)
IF (jatom < iatom .AND. (.NOT. my_skip_atom_symmetry)) CYCLE
jkind = kind_of(jatom)
nsetb = basis_parameter(jkind)%nset
rb = particle_set(jatom)%r(:)
IF (do_periodic) THEN
temp = rb - ra
pbc_B = pbc(temp, cell)
B11 = ra + pbc_B
rab2 = (ra(1) - B11(1))**2 + (ra(2) - B11(2))**2 + (ra(3) - B11(3))**2
ELSE
rab2 = (ra(1) - rb(1))**2 + (ra(2) - rb(2))**2 + (ra(3) - rb(3))**2
B11 = rb ! ra - rb
END IF
IF ((coeffs_kind(jkind, ikind)%x(1)*rab2 + &
coeffs_kind(jkind, ikind)%x(2)) + coeffs_kind_max0 + pmax_blocks < log10_eps_schwarz) CYCLE
n_element = n_element + 1
list%elements(n_element)%pair = (/iatom, jatom/)
list%elements(n_element)%kind_pair = (/ikind, jkind/)
list%elements(n_element)%r1 = ra
list%elements(n_element)%r2 = B11
list%elements(n_element)%dist2 = rab2
! build a list of guaranteed overlapping sets
list%elements(n_element)%set_bounds(1) = nset_ij + 1
DO iset = 1, nseta
DO jset = 1, nsetb
IF (coeffs_set(jset, iset, jkind, ikind)%x(1)*rab2 + coeffs_set(jset, iset, jkind, ikind)%x(2) + &
coeffs_kind_max0 + pmax_blocks < log10_eps_schwarz) CYCLE
nset_ij = nset_ij + 1
set_list(nset_ij)%pair = (/iset, jset/)
END DO
END DO
list%elements(n_element)%set_bounds(2) = nset_ij
END DO
END DO
list%n_element = n_element
END SUBROUTINE build_pair_list_mp2
END MODULE hfx_pair_list_methods