-
Notifications
You must be signed in to change notification settings - Fork 1
/
hfx_exx.F
801 lines (663 loc) · 36.3 KB
/
hfx_exx.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Routines to calculate EXX in RPA and energy correction methods
!> \par History
!> 07.2020 separated from mp2.F [F. Stein, code by Jan Wilhelm]
!> 06.2022 EXX contribution to the forces [A. Bussy]
!> 03.2023 Generalized for energy correction methods
!> \author Jan Wilhelm, Frederick Stein, Augustin Bussy, Fabian Belleflamme
! **************************************************************************************************
MODULE hfx_exx
USE admm_methods, ONLY: admm_projection_derivative
USE admm_types, ONLY: admm_env_create,&
admm_env_release,&
admm_type,&
get_admm_env
USE cp_control_types, ONLY: dft_control_type
USE cp_dbcsr_api, ONLY: dbcsr_add,&
dbcsr_copy,&
dbcsr_create,&
dbcsr_p_type,&
dbcsr_release,&
dbcsr_scale,&
dbcsr_set,&
dbcsr_type
USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
copy_fm_to_dbcsr,&
dbcsr_allocate_matrix_set,&
dbcsr_deallocate_matrix_set
USE cp_log_handling, ONLY: cp_get_default_logger,&
cp_logger_get_default_unit_nr,&
cp_logger_type
USE hfx_admm_utils, ONLY: create_admm_xc_section,&
tddft_hfx_matrix
USE hfx_derivatives, ONLY: derivatives_four_center
USE hfx_energy_potential, ONLY: integrate_four_center
USE hfx_ri, ONLY: hfx_ri_update_forces,&
hfx_ri_update_ks
USE hfx_types, ONLY: hfx_type
USE input_constants, ONLY: do_admm_aux_exch_func_none
USE input_section_types, ONLY: section_vals_create,&
section_vals_duplicate,&
section_vals_get,&
section_vals_get_subs_vals,&
section_vals_release,&
section_vals_set_subs_vals,&
section_vals_type,&
section_vals_val_get
USE kinds, ONLY: dp
USE machine, ONLY: m_walltime
USE message_passing, ONLY: mp_para_env_type
USE parallel_gemm_api, ONLY: parallel_gemm
USE pw_env_types, ONLY: pw_env_get,&
pw_env_type
USE pw_methods, ONLY: pw_scale
USE pw_pool_types, ONLY: pw_pool_type
USE pw_types, ONLY: pw_r3d_rs_type
USE qs_energy_types, ONLY: qs_energy_type
USE qs_environment_types, ONLY: get_qs_env,&
qs_environment_type
USE qs_integrate_potential, ONLY: integrate_v_rspace
USE qs_ks_reference, ONLY: ks_ref_potential
USE qs_rho_types, ONLY: qs_rho_get,&
qs_rho_type
USE qs_vxc, ONLY: qs_vxc_create
USE task_list_types, ONLY: task_list_type
USE virial_types, ONLY: virial_type
!$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num, omp_get_num_threads
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'hfx_exx'
PUBLIC :: calculate_exx, add_exx_to_rhs, calc_exx_admm_xc_contributions, exx_pre_hfx, exx_post_hfx
CONTAINS
! **************************************************************************************************
!> \brief ...
!> \param qs_env ...
!> \param unit_nr ...
!> \param hfx_sections ...
!> \param x_data ...
!> \param do_gw ...
!> \param do_admm ...
!> \param calc_forces ...
!> \param reuse_hfx ...
!> \param do_im_time ...
!> \param E_ex_from_GW ...
!> \param E_admm_from_GW ...
!> \param t3 ...
! **************************************************************************************************
SUBROUTINE calculate_exx(qs_env, unit_nr, hfx_sections, x_data, &
do_gw, do_admm, calc_forces, reuse_hfx, do_im_time, &
E_ex_from_GW, E_admm_from_GW, t3)
TYPE(qs_environment_type), POINTER :: qs_env
INTEGER, INTENT(IN) :: unit_nr
TYPE(section_vals_type), POINTER :: hfx_sections
TYPE(hfx_type), DIMENSION(:, :), POINTER :: x_data
LOGICAL, INTENT(IN) :: do_gw, do_admm, calc_forces, reuse_hfx, &
do_im_time
REAL(KIND=dp), INTENT(IN) :: E_ex_from_GW, E_admm_from_GW(2), t3
CHARACTER(len=*), PARAMETER :: routineN = 'calculate_exx'
INTEGER :: handle, i, irep, ispin, mspin, n_rep_hf, &
nspins
LOGICAL :: calc_ints, hfx_treat_lsd_in_core, &
use_virial
REAL(KIND=dp) :: eh1, ehfx, t1, t2, tf1, tf2
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_ks, matrix_ks_aux_fit, rho_ao, &
rho_ao_aux_fit, rho_ao_resp
TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_ks_2d, rho_ao_2d
TYPE(dft_control_type), POINTER :: dft_control
TYPE(mp_para_env_type), POINTER :: para_env
TYPE(qs_energy_type), POINTER :: energy
TYPE(qs_rho_type), POINTER :: rho, rho_aux_fit
TYPE(section_vals_type), POINTER :: input
TYPE(virial_type), POINTER :: virial
CALL timeset(routineN, handle)
t1 = m_walltime()
NULLIFY (input, para_env, matrix_ks, matrix_ks_aux_fit, rho, rho_ao, virial, &
dft_control, rho_aux_fit, rho_ao_aux_fit)
CALL exx_pre_hfx(hfx_sections, x_data, reuse_hfx)
CALL get_qs_env(qs_env=qs_env, &
input=input, &
para_env=para_env, &
energy=energy, &
rho=rho, &
matrix_ks=matrix_ks, &
virial=virial, &
dft_control=dft_control)
CALL qs_rho_get(rho, rho_ao=rho_ao)
IF (do_admm) THEN
CALL get_admm_env(qs_env%admm_env, &
matrix_ks_aux_fit=matrix_ks_aux_fit, &
rho_aux_fit=rho_aux_fit)
CALL qs_rho_get(rho_aux_fit, rho_ao=rho_ao_aux_fit)
IF (qs_env%admm_env%do_gapw) THEN
CPABORT("ADMM EXX only implmented with GPW")
END IF
END IF
CALL section_vals_get(hfx_sections, n_repetition=n_rep_hf)
CALL section_vals_val_get(hfx_sections, "TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
i_rep_section=1)
! put matrix_ks to zero
DO i = 1, SIZE(matrix_ks)
CALL dbcsr_set(matrix_ks(i)%matrix, 0.0_dp)
IF (do_admm) THEN
CALL dbcsr_set(matrix_ks_aux_fit(i)%matrix, 0.0_dp)
END IF
END DO
! take the exact exchange energy from GW or calculate it
IF (do_gw) THEN
IF (calc_forces) CPABORT("Not implemented")
IF (qs_env%mp2_env%ri_g0w0%update_xc_energy) THEN
CALL remove_exc_energy(energy)
energy%total = energy%total + E_ex_from_GW
energy%ex = E_ex_from_GW
IF (do_admm) THEN
energy%total = energy%total + E_admm_from_GW(1) + E_admm_from_GW(2)
energy%exc = E_admm_from_GW(1)
energy%exc_aux_fit = E_admm_from_GW(2)
END IF
t2 = m_walltime()
IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.6)') 'Total EXX Time=', t2 - t1 + t3
IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'EXX energy = ', energy%ex
IF (do_admm .AND. unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') &
'EXX ADMM XC correction = ', E_admm_from_GW(1) + E_admm_from_GW(2)
END IF
ELSE
CALL remove_exc_energy(energy)
nspins = dft_control%nspins
mspin = 1
IF (hfx_treat_lsd_in_core) mspin = nspins
calc_ints = .TRUE.
IF (reuse_hfx) calc_ints = .FALSE.
IF (calc_forces .AND. do_im_time) calc_ints = .FALSE.
ehfx = 0.0_dp
IF (do_admm) THEN
matrix_ks_2d(1:nspins, 1:1) => matrix_ks_aux_fit(1:nspins)
rho_ao_2d(1:nspins, 1:1) => rho_ao_aux_fit(1:nspins)
ELSE
matrix_ks_2d(1:nspins, 1:1) => matrix_ks(1:nspins)
rho_ao_2d(1:nspins, 1:1) => rho_ao(1:nspins)
END IF
DO irep = 1, n_rep_hf
IF (x_data(irep, 1)%do_hfx_ri) THEN
CALL hfx_ri_update_ks(qs_env, x_data(irep, 1)%ri_data, matrix_ks_2d, ehfx, &
rho_ao=rho_ao_2d, geometry_did_change=calc_ints, nspins=nspins, &
hf_fraction=x_data(irep, 1)%general_parameter%fraction)
ELSE
DO ispin = 1, mspin
CALL integrate_four_center(qs_env, x_data, matrix_ks_2d, eh1, &
rho_ao_2d, hfx_sections, para_env, &
calc_ints, irep, .TRUE., ispin=ispin)
ehfx = ehfx + eh1
END DO
END IF
END DO
! include the EXX contribution to the total energy
energy%ex = ehfx
energy%total = energy%total + energy%ex
use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
IF (use_virial) THEN
virial%pv_calculate = .TRUE.
virial%pv_fock_4c = 0.0_dp
END IF
IF (calc_forces) THEN
tf1 = m_walltime()
!Note: no need to remove xc forces: they are not even calculated in the first place
NULLIFY (rho_ao_resp)
DO irep = 1, n_rep_hf
IF (x_data(irep, 1)%do_hfx_ri) THEN
CALL hfx_ri_update_forces(qs_env, x_data(irep, 1)%ri_data, nspins, &
x_data(irep, 1)%general_parameter%fraction, &
rho_ao=rho_ao_2d, rho_ao_resp=rho_ao_resp, &
use_virial=use_virial)
ELSE
CALL derivatives_four_center(qs_env, rho_ao_2d, rho_ao_resp, &
hfx_sections, para_env, irep, &
use_virial, external_x_data=x_data)
END IF
END DO !irep
tf2 = m_walltime()
IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.6)') 'Total EXX Force Time=', tf2 - tf1
END IF
IF (use_virial) THEN
virial%pv_exx = virial%pv_exx - virial%pv_fock_4c
virial%pv_virial = virial%pv_virial - virial%pv_fock_4c
END IF
! ADMM XC correction
IF (do_admm) THEN
CALL calc_exx_admm_xc_contributions(qs_env, matrix_ks, matrix_ks_aux_fit, x_data, &
energy%exc, energy%exc_aux_fit, calc_forces, &
use_virial)
! ADMM overlap forces
IF (calc_forces) CALL admm_projection_derivative(qs_env, matrix_ks_aux_fit, rho_ao)
energy%total = energy%total + energy%exc_aux_fit
energy%total = energy%total + energy%exc
END IF
IF (use_virial) THEN
virial%pv_calculate = .FALSE.
END IF
t2 = m_walltime()
IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.6)') 'Total EXX Time=', t2 - t1 + t3
IF (unit_nr > 0) WRITE (unit_nr, '(T3,A,T56,F25.14)') 'EXX energy = ', energy%ex
IF (do_admm .AND. unit_nr > 0) THEN
WRITE (unit_nr, '(T3,A,T56,F25.14)') 'EXX ADMM XC correction = ', energy%exc + energy%exc_aux_fit
END IF
END IF
CALL exx_post_hfx(qs_env, x_data, reuse_hfx)
CALL timestop(handle)
END SUBROUTINE calculate_exx
! **************************************************************************************************
!> \brief Add the EXX contribution to the RHS of the Z-vector equation, namely the HF Hamiltonian
!> \param rhs ...
!> \param qs_env ...
!> \param ext_hfx_section ...
!> \param x_data ...
!> \param recalc_integrals ...
!> \param do_admm ...
!> \param do_ec ...
!> \param do_exx ...
!> \param reuse_hfx ...
! **************************************************************************************************
SUBROUTINE add_exx_to_rhs(rhs, qs_env, ext_hfx_section, x_data, &
recalc_integrals, do_admm, do_ec, do_exx, reuse_hfx)
TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN) :: rhs
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(section_vals_type), POINTER :: ext_hfx_section
TYPE(hfx_type), DIMENSION(:, :), POINTER :: x_data
LOGICAL, INTENT(IN), OPTIONAL :: recalc_integrals, do_admm, do_ec, &
do_exx, reuse_hfx
CHARACTER(LEN=*), PARAMETER :: routineN = 'add_exx_to_rhs'
INTEGER :: handle, ispin, nao, nao_aux, nspins, &
unit_nr
LOGICAL :: calc_ints, do_hfx, my_do_ec, my_do_exx, &
my_recalc_integrals
REAL(dp) :: dummy_real1, dummy_real2
TYPE(admm_type), POINTER :: admm_env
TYPE(cp_logger_type), POINTER :: logger
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: dbcsr_work, matrix_ks, matrix_s_aux, &
rho_ao, rho_ao_aux, work_admm
TYPE(dbcsr_type) :: dbcsr_tmp
TYPE(dft_control_type), POINTER :: dft_control
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type) :: vh_rspace
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: vadmm_rspace, vtau_rspace, vxc_rspace
TYPE(qs_rho_type), POINTER :: rho, rho_aux_fit
TYPE(section_vals_type), POINTER :: hfx_section
TYPE(task_list_type), POINTER :: task_list_aux_fit
NULLIFY (dbcsr_work, matrix_ks, rho, hfx_section, pw_env, vadmm_rspace, vtau_rspace, vxc_rspace, &
auxbas_pw_pool, dft_control, rho_ao, rho_aux_fit, rho_ao_aux, work_admm, &
matrix_s_aux, admm_env, task_list_aux_fit)
logger => cp_get_default_logger()
IF (logger%para_env%is_source()) THEN
unit_nr = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
ELSE
unit_nr = -1
END IF
CALL timeset(routineN, handle)
my_recalc_integrals = .FALSE.
IF (PRESENT(recalc_integrals)) my_recalc_integrals = recalc_integrals
my_do_ec = .FALSE.
IF (PRESENT(do_ec)) my_do_ec = do_ec
my_do_exx = .TRUE.
IF (PRESENT(do_exx)) my_do_exx = do_exx
! Strategy: we take the ks_matrix, remove the current xc contribution, and then add the RPA HF one
CALL get_qs_env(qs_env, matrix_ks=matrix_ks, rho=rho, pw_env=pw_env, dft_control=dft_control)
nspins = dft_control%nspins
! do_exx ; subtract XC and EX
! do_dcdft: subtract EX
CALL dbcsr_allocate_matrix_set(dbcsr_work, nspins)
DO ispin = 1, nspins
ALLOCATE (dbcsr_work(ispin)%matrix)
CALL dbcsr_copy(dbcsr_work(ispin)%matrix, matrix_ks(ispin)%matrix)
CALL dbcsr_set(dbcsr_work(ispin)%matrix, 0.0_dp)
END DO
IF (dft_control%do_admm) THEN
CALL get_qs_env(qs_env, admm_env=admm_env)
CALL get_admm_env(admm_env, matrix_s_aux_fit=matrix_s_aux, task_list_aux_fit=task_list_aux_fit, &
rho_aux_fit=rho_aux_fit)
CALL dbcsr_allocate_matrix_set(work_admm, nspins)
DO ispin = 1, nspins
ALLOCATE (work_admm(ispin)%matrix)
CALL dbcsr_create(work_admm(ispin)%matrix, template=matrix_s_aux(1)%matrix)
CALL dbcsr_copy(work_admm(ispin)%matrix, matrix_s_aux(1)%matrix)
CALL dbcsr_set(work_admm(ispin)%matrix, 0.0_dp)
END DO
CALL dbcsr_create(dbcsr_tmp, template=matrix_ks(1)%matrix)
CALL dbcsr_copy(dbcsr_tmp, matrix_ks(1)%matrix)
nao = admm_env%nao_orb
nao_aux = admm_env%nao_aux_fit
CALL qs_rho_get(rho_aux_fit, rho_ao=rho_ao_aux)
END IF
CALL qs_rho_get(rho, rho_ao=rho_ao)
! Remove the standard XC + HFX contribution
CALL ks_ref_potential(qs_env, vh_rspace, vxc_rspace, vtau_rspace, vadmm_rspace, dummy_real1, dummy_real2)
! Only remove standard XC and/or HFX
! (due to different requirements for RHS)
IF (my_do_exx) THEN
DO ispin = 1, nspins
CALL dbcsr_copy(dbcsr_work(ispin)%matrix, matrix_ks(ispin)%matrix)
END DO
DO ispin = 1, nspins
CALL pw_scale(vxc_rspace(ispin), -1.0_dp)
CALL integrate_v_rspace(v_rspace=vxc_rspace(ispin), hmat=dbcsr_work(ispin), qs_env=qs_env, &
calculate_forces=.FALSE.)
IF (ASSOCIATED(vtau_rspace)) THEN
CALL pw_scale(vtau_rspace(ispin), -1.0_dp)
CALL integrate_v_rspace(v_rspace=vtau_rspace(ispin), hmat=dbcsr_work(ispin), qs_env=qs_env, &
calculate_forces=.FALSE., compute_tau=.TRUE.)
END IF
END DO
END IF ! do_exx
! Remove standard HFX
IF (my_do_exx .OR. my_do_ec) THEN
hfx_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%HF")
CALL section_vals_get(hfx_section, explicit=do_hfx)
IF (do_hfx) THEN
IF (dft_control%do_admm) THEN
!note: factor -1.0 taken care of later, after HFX ADMM contribution is taken
IF (.NOT. qs_env%admm_env%aux_exch_func == do_admm_aux_exch_func_none) THEN
DO ispin = 1, nspins
CALL integrate_v_rspace(v_rspace=vadmm_rspace(ispin), hmat=work_admm(ispin), &
qs_env=qs_env, calculate_forces=.FALSE., basis_type="AUX_FIT", &
task_list_external=task_list_aux_fit)
END DO
END IF
CALL tddft_hfx_matrix(work_admm, rho_ao_aux, qs_env, .FALSE., my_recalc_integrals)
DO ispin = 1, nspins
CALL copy_dbcsr_to_fm(work_admm(ispin)%matrix, admm_env%work_aux_aux)
CALL parallel_gemm('N', 'N', nao_aux, nao, nao_aux, 1.0_dp, admm_env%work_aux_aux, admm_env%A, &
0.0_dp, admm_env%work_aux_orb)
CALL parallel_gemm('T', 'N', nao, nao, nao_aux, 1.0_dp, admm_env%A, admm_env%work_aux_orb, &
0.0_dp, admm_env%work_orb_orb)
CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbcsr_tmp, keep_sparsity=.TRUE.)
CALL dbcsr_add(dbcsr_work(ispin)%matrix, dbcsr_tmp, 1.0_dp, -1.0_dp)
END DO
ELSE
DO ispin = 1, nspins
CALL dbcsr_scale(rho_ao(ispin)%matrix, -1.0_dp)
END DO
CALL tddft_hfx_matrix(dbcsr_work, rho_ao, qs_env, .FALSE., my_recalc_integrals)
DO ispin = 1, nspins
CALL dbcsr_scale(rho_ao(ispin)%matrix, -1.0_dp)
END DO
END IF
END IF !do_hfx
END IF ! do_exx
! Clean
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
CALL auxbas_pw_pool%give_back_pw(vh_rspace)
DO ispin = 1, nspins
CALL auxbas_pw_pool%give_back_pw(vxc_rspace(ispin))
IF (ASSOCIATED(vtau_rspace)) THEN
CALL auxbas_pw_pool%give_back_pw(vtau_rspace(ispin))
END IF
END DO
DEALLOCATE (vxc_rspace)
IF (ASSOCIATED(vtau_rspace)) DEALLOCATE (vtau_rspace)
IF (dft_control%do_admm) THEN
DO ispin = 1, nspins
IF (ASSOCIATED(vadmm_rspace)) THEN
CALL auxbas_pw_pool%give_back_pw(vadmm_rspace(ispin))
END IF
END DO
IF (ASSOCIATED(vadmm_rspace)) DEALLOCATE (vadmm_rspace)
END IF
!Add the HF contribution from RI_RPA/EC_ENV to the ks matrix
CALL exx_pre_hfx(ext_hfx_section, x_data, reuse_hfx)
calc_ints = .TRUE.
IF (reuse_hfx) calc_ints = .FALSE.
IF (do_admm) THEN
DO ispin = 1, nspins
CALL dbcsr_set(work_admm(ispin)%matrix, 0.0_dp)
END DO
CALL tddft_hfx_matrix(work_admm, rho_ao_aux, qs_env, .FALSE., calc_ints, ext_hfx_section, &
x_data)
!ADMM XC correction
CALL calc_exx_admm_xc_contributions(qs_env, dbcsr_work, work_admm, x_data, dummy_real1, &
dummy_real2, .FALSE., .FALSE.)
DO ispin = 1, nspins
CALL copy_dbcsr_to_fm(work_admm(ispin)%matrix, admm_env%work_aux_aux)
CALL parallel_gemm('N', 'N', nao_aux, nao, nao_aux, 1.0_dp, admm_env%work_aux_aux, admm_env%A, &
0.0_dp, admm_env%work_aux_orb)
CALL parallel_gemm('T', 'N', nao, nao, nao_aux, 1.0_dp, admm_env%A, admm_env%work_aux_orb, &
0.0_dp, admm_env%work_orb_orb)
CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbcsr_tmp, keep_sparsity=.TRUE.)
CALL dbcsr_add(dbcsr_work(ispin)%matrix, dbcsr_tmp, 1.0_dp, 1.0_dp)
END DO
ELSE
CALL tddft_hfx_matrix(dbcsr_work, rho_ao, qs_env, .FALSE., calc_ints, ext_hfx_section, x_data)
END IF
CALL exx_post_hfx(qs_env, x_data, reuse_hfx)
!Update the RHS
DO ispin = 1, nspins
CALL dbcsr_add(rhs(ispin)%matrix, dbcsr_work(ispin)%matrix, 1.0_dp, 1.0_dp)
END DO
CALL dbcsr_deallocate_matrix_set(dbcsr_work)
IF (dft_control%do_admm) THEN
CALL dbcsr_deallocate_matrix_set(work_admm)
CALL dbcsr_release(dbcsr_tmp)
END IF
CALL timestop(handle)
END SUBROUTINE add_exx_to_rhs
! **************************************************************************************************
!> \brief get the ADMM XC section from the ri_rpa/ec_env type if available, create and store them otherwise
!> \param qs_env ...
!> \param x_data ...
!> \param xc_section_aux ...
!> \param xc_section_primary ...
! **************************************************************************************************
SUBROUTINE get_exx_admm_xc_sections(qs_env, x_data, xc_section_aux, xc_section_primary)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(hfx_type), DIMENSION(:, :), POINTER :: x_data
TYPE(section_vals_type), POINTER :: xc_section_aux, xc_section_primary
INTEGER :: natom
TYPE(admm_type), POINTER :: qs_admm_env, tmp_admm_env
TYPE(dft_control_type), POINTER :: dft_control
TYPE(mp_para_env_type), POINTER :: para_env
TYPE(section_vals_type), POINTER :: xc_fun, xc_fun_empty, xc_section, &
xc_section_empty
NULLIFY (qs_admm_env, tmp_admm_env, para_env, xc_section, xc_section_empty, xc_fun_empty, &
xc_fun, dft_control)
IF (ASSOCIATED(qs_env%mp2_env)) THEN
IF (ASSOCIATED(qs_env%mp2_env%ri_rpa%xc_section_aux) .AND. &
ASSOCIATED(qs_env%mp2_env%ri_rpa%xc_section_primary)) THEN
xc_section_aux => qs_env%mp2_env%ri_rpa%xc_section_aux
xc_section_primary => qs_env%mp2_env%ri_rpa%xc_section_primary
END IF
ELSEIF (qs_env%energy_correction) THEN
IF (ASSOCIATED(qs_env%ec_env%xc_section_aux) .AND. &
ASSOCIATED(qs_env%ec_env%xc_section_primary)) THEN
xc_section_aux => qs_env%ec_env%xc_section_aux
xc_section_primary => qs_env%ec_env%xc_section_primary
END IF
END IF
IF (.NOT. ASSOCIATED(xc_section_aux) .OR. .NOT. ASSOCIATED(xc_section_primary)) THEN
CALL get_qs_env(qs_env, admm_env=qs_admm_env, natom=natom, para_env=para_env, dft_control=dft_control)
CPASSERT(ASSOCIATED(qs_admm_env))
!create XC section with XC_FUNCITONAL NONE (aka empty XC_FUNCTIONAL section)
xc_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC")
xc_fun => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
CALL section_vals_duplicate(xc_section, xc_section_empty)
CALL section_vals_create(xc_fun_empty, xc_fun%section)
CALL section_vals_set_subs_vals(xc_section_empty, "XC_FUNCTIONAL", xc_fun_empty)
CALL admm_env_create(tmp_admm_env, dft_control%admm_control, qs_admm_env%mos_aux_fit, &
para_env, natom, qs_admm_env%nao_aux_fit)
CALL create_admm_xc_section(x_data=x_data, xc_section=xc_section_empty, &
admm_env=tmp_admm_env)
CALL section_vals_duplicate(tmp_admm_env%xc_section_aux, xc_section_aux)
CALL section_vals_duplicate(tmp_admm_env%xc_section_primary, xc_section_primary)
IF (ASSOCIATED(qs_env%mp2_env)) THEN
qs_env%mp2_env%ri_rpa%xc_section_aux => xc_section_aux
qs_env%mp2_env%ri_rpa%xc_section_primary => xc_section_primary
END IF
IF (qs_env%energy_correction) THEN
qs_env%ec_env%xc_section_aux => xc_section_aux
qs_env%ec_env%xc_section_primary => xc_section_primary
END IF
CALL section_vals_release(xc_section_empty)
CALL section_vals_release(xc_fun_empty)
CALL admm_env_release(tmp_admm_env)
END IF
END SUBROUTINE get_exx_admm_xc_sections
! **************************************************************************************************
!> \brief Calculate the RI_RPA%HF / EC_ENV%HF ADMM XC contributions to the KS matrices and the respective energies
!> \param qs_env ...
!> \param matrix_prim ...
!> \param matrix_aux ...
!> \param x_data ...
!> \param exc ...
!> \param exc_aux_fit ...
!> \param calc_forces ...
!> \param use_virial ...
! **************************************************************************************************
SUBROUTINE calc_exx_admm_xc_contributions(qs_env, matrix_prim, matrix_aux, x_data, exc, exc_aux_fit, &
calc_forces, use_virial)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_prim, matrix_aux
TYPE(hfx_type), DIMENSION(:, :), POINTER :: x_data
REAL(dp), INTENT(INOUT) :: exc, exc_aux_fit
LOGICAL, INTENT(IN) :: calc_forces, use_virial
INTEGER :: ispin, nspins
REAL(dp), DIMENSION(3, 3) :: pv_loc
TYPE(admm_type), POINTER :: admm_env
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: rho_ao, rho_ao_aux_fit
TYPE(dft_control_type), POINTER :: dft_control
TYPE(pw_env_type), POINTER :: pw_env
TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: v_dummy, v_rspace, v_rspace_aux_fit
TYPE(qs_rho_type), POINTER :: rho, rho_aux_fit
TYPE(section_vals_type), POINTER :: xc_section_aux, xc_section_primary
TYPE(virial_type), POINTER :: virial
NULLIFY (xc_section_aux, xc_section_primary, rho, rho_aux_fit, v_dummy, v_rspace, v_rspace_aux_fit, &
auxbas_pw_pool, pw_env, rho_ao, rho_ao_aux_fit, dft_control, admm_env)
CALL get_qs_env(qs_env, dft_control=dft_control, pw_env=pw_env, rho=rho, admm_env=admm_env, virial=virial)
CALL get_admm_env(admm_env, rho_aux_fit=rho_aux_fit)
nspins = dft_control%nspins
CALL qs_rho_get(rho, rho_ao=rho_ao)
CALL qs_rho_get(rho_aux_fit, rho_ao=rho_ao_aux_fit)
CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
CALL get_exx_admm_xc_sections(qs_env, x_data, xc_section_aux, xc_section_primary)
IF (use_virial) virial%pv_xc = 0.0_dp
CALL qs_vxc_create(qs_env%ks_env, rho_struct=rho_aux_fit, xc_section=xc_section_aux, &
vxc_rho=v_rspace_aux_fit, vxc_tau=v_dummy, exc=exc_aux_fit)
IF (use_virial) THEN
virial%pv_exc = virial%pv_exc - virial%pv_xc
virial%pv_virial = virial%pv_virial - virial%pv_xc
END IF
IF (.NOT. dft_control%admm_control%aux_exch_func == do_admm_aux_exch_func_none) THEN
IF (use_virial) pv_loc = virial%pv_virial
DO ispin = 1, nspins
CALL pw_scale(v_rspace_aux_fit(ispin), v_rspace_aux_fit(ispin)%pw_grid%dvol)
CALL integrate_v_rspace(v_rspace=v_rspace_aux_fit(ispin), hmat=matrix_aux(ispin), &
pmat=rho_ao_aux_fit(ispin), qs_env=qs_env, &
basis_type="AUX_FIT", calculate_forces=calc_forces, &
task_list_external=qs_env%admm_env%task_list_aux_fit)
END DO
IF (use_virial) virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
END IF
IF (ASSOCIATED(v_rspace_aux_fit)) THEN
DO ispin = 1, nspins
CALL auxbas_pw_pool%give_back_pw(v_rspace_aux_fit(ispin))
END DO
DEALLOCATE (v_rspace_aux_fit)
END IF
IF (ASSOCIATED(v_dummy)) THEN
DO ispin = 1, nspins
CALL auxbas_pw_pool%give_back_pw(v_dummy(ispin))
END DO
DEALLOCATE (v_dummy)
END IF
IF (use_virial) virial%pv_xc = 0.0_dp
CALL qs_vxc_create(qs_env%ks_env, rho_struct=rho, xc_section=xc_section_primary, &
vxc_rho=v_rspace, vxc_tau=v_dummy, exc=exc)
IF (use_virial) THEN
virial%pv_exc = virial%pv_exc - virial%pv_xc
virial%pv_virial = virial%pv_virial - virial%pv_xc
END IF
IF (.NOT. dft_control%admm_control%aux_exch_func == do_admm_aux_exch_func_none) THEN
IF (use_virial) pv_loc = virial%pv_virial
DO ispin = 1, nspins
CALL pw_scale(v_rspace(ispin), v_rspace(ispin)%pw_grid%dvol)
CALL integrate_v_rspace(v_rspace=v_rspace(ispin), hmat=matrix_prim(ispin), &
pmat=rho_ao(ispin), qs_env=qs_env, &
calculate_forces=calc_forces)
END DO
IF (use_virial) virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
END IF
IF (ASSOCIATED(v_rspace)) THEN
DO ispin = 1, nspins
CALL auxbas_pw_pool%give_back_pw(v_rspace(ispin))
END DO
DEALLOCATE (v_rspace)
END IF
IF (ASSOCIATED(v_dummy)) THEN
DO ispin = 1, nspins
CALL auxbas_pw_pool%give_back_pw(v_dummy(ispin))
END DO
DEALLOCATE (v_dummy)
END IF
END SUBROUTINE calc_exx_admm_xc_contributions
! **************************************************************************************************
!> \brief Prepare the external x_data for integration. Simply change the HFX fraction in case the
!> qs_env%x_data is reused
!> \param ext_hfx_section ...
!> \param x_data ...
!> \param reuse_hfx ...
! **************************************************************************************************
SUBROUTINE exx_pre_hfx(ext_hfx_section, x_data, reuse_hfx)
TYPE(section_vals_type), POINTER :: ext_hfx_section
TYPE(hfx_type), DIMENSION(:, :), POINTER :: x_data
LOGICAL :: reuse_hfx
INTEGER :: irep, n_rep_hf
REAL(dp) :: frac
IF (.NOT. reuse_hfx) RETURN
CALL section_vals_get(ext_hfx_section, n_repetition=n_rep_hf)
DO irep = 1, n_rep_hf
CALL section_vals_val_get(ext_hfx_section, "FRACTION", r_val=frac, i_rep_section=irep)
x_data(irep, :)%general_parameter%fraction = frac
END DO
END SUBROUTINE exx_pre_hfx
! **************************************************************************************************
!> \brief Revert back to the proper HFX fraction in case qs_env%x_data is reused
!> \param qs_env ...
!> \param x_data ...
!> \param reuse_hfx ...
! **************************************************************************************************
SUBROUTINE exx_post_hfx(qs_env, x_data, reuse_hfx)
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(hfx_type), DIMENSION(:, :), POINTER :: x_data
LOGICAL :: reuse_hfx
INTEGER :: irep, n_rep_hf
REAL(dp) :: frac
TYPE(section_vals_type), POINTER :: input, qs_hfx_section
IF (.NOT. reuse_hfx) RETURN
CALL get_qs_env(qs_env, input=input)
qs_hfx_section => section_vals_get_subs_vals(input, "DFT%XC%HF")
CALL section_vals_get(qs_hfx_section, n_repetition=n_rep_hf)
DO irep = 1, n_rep_hf
CALL section_vals_val_get(qs_hfx_section, "FRACTION", r_val=frac, i_rep_section=irep)
x_data(irep, :)%general_parameter%fraction = frac
END DO
END SUBROUTINE exx_post_hfx
! **************************************************************************************************
!> \brief ...
!> \param energy ...
! **************************************************************************************************
ELEMENTAL SUBROUTINE remove_exc_energy(energy)
TYPE(qs_energy_type), INTENT(INOUT) :: energy
! Remove the Exchange-correlation energy contributions from the total energy
energy%total = energy%total - (energy%exc + energy%exc1 + energy%ex + &
energy%exc_aux_fit + energy%exc1_aux_fit)
energy%exc = 0.0_dp
energy%exc1 = 0.0_dp
energy%exc_aux_fit = 0.0_dp
energy%exc1_aux_fit = 0.0_dp
energy%ex = 0.0_dp
END SUBROUTINE
END MODULE hfx_exx