-
Notifications
You must be signed in to change notification settings - Fork 2
/
eg_private.py
177 lines (149 loc) · 4.98 KB
/
eg_private.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python
import math
import pylink
import income as myMeager
import position as anAwkward
import taxes as deathAnd
from position import Grant
from position import from_table
###############################################################################
# Add your grants into the system #
###############################################################################
# This array holds a list of grant objects in any order. They'll be
# accessible either by index, or by name later on.
GRANTS = [
# The easiest way to initialize your grant objects is to use a
# convenience function called from_table. It is designed to take
# in a few easy things you can find (such as number of shares, and
# strike price), as well as three rows from your vesting schedule.
# Using those three rows, it'll work out the vesting schedule for
# you. Check the definition in position.py for more details.
from_table(name='RSU-TK421',
vehicle='rsu',
first_date='1/1/19', first_val=1500,
second_date='2/1/19', second_val=2000,
last_date='1/1/23', last_val=500,
n_shares=96000,
exercised=0,
sold=0),
# Sometimes, they do grants as bonuses
Grant(name='BonusTigers',
vehicle='nso',
strike_usd=2,
start='1/1/10',
n_periods=1,
n_shares=10000,
exercised=500,
sold=250,
period_months=1),
# If you want to manually specify
Grant(name='javax.swing',
vehicle='iso',
strike_usd=4,
start='1/1/15',
n_periods=48,
n_shares=250000,
exercised=0,
sold=0,
period_months=3),
]
###############################################################################
# Select your tax table #
###############################################################################
fed_married_joint = {
0 : 0.1,
19750 : 0.12,
80250 : 0.22,
171050 : 0.24,
326600 : 0.32,
414700 : 0.35,
622050 : 0.37
}
fed_single = {
0 : 0.1,
19750/2 : 0.12,
80250/2 : 0.22,
171050/2 : 0.24,
326600/2 : 0.32,
414700/2 : 0.35,
622050/2 : 0.37
}
ca_married = {
0 : 0.01,
17618 : 0.02,
41766 : 0.04,
65920 : 0.06,
91506 : 0.08,
115648 : 0.093,
590746 : 0.103,
708890 : 0.113,
1181484 : 0.123,
1999999 : 0.133
}
ca_single = {
0 : 0.01,
8809 : 0.02,
20883 : 0.04,
32960 : 0.06,
45753 : 0.08,
57824 : 0.093,
295371 : 0.103,
354445 : 0.113,
590742 : 0.123,
1000000 : 0.133
}
ny_single = {
0 : 0.04,
8500 : 0.045,
11700 : 0.0525,
13900 : 0.0590,
21400 : 0.0621,
80650 : 0.0649,
215400 : 0.0685,
1077550 : 0.0882,
}
###############################################################################
# Input your constants #
###############################################################################
__constants = {
# This is where you select the utilized tax tables
'fed_tax_table': fed_married_joint,
'state_tax_table': ca_married,
# Look up the numbers that are appropriate for your tax filing
'fed_std_deduction_usd': 24800,
'amt_exemption_rolloff_threshhold_usd': 1036800,
'amt_exemption_base_usd': 113400,
'state_std_deduction_usd': 4537,
# This price determines things like your tax burden from RSUs
# vesting. It's also the default sales price for any sales orders
# you place.
'ipo_price_usd': 12,
# The query date is necessary to determine how many shares have
# vested. I'd recommend setting it to the IPO date.
'query_date': '9/29/20',
# If you want to also exercise some shares, you'll need to record
# that income as it counts towards amti. This is done in
# investigator.py where it determines the number of ISOs you can
# exercise before hitting AMT.
'iso_exercise_income_usd': 0,
# pre-tax contributions
'palantir_401k_usd': 0,
'palantir_fsa_usd': 0,
'palantir_drca_usd': 0,
# Regular income
'reg_income_usd': 150000,
# If you have any other income that does not count as regular
# income, but does affect amti (such as any ISOs you've exercised
# this year), it should be included here.
'ext_amt_income_usd': 0,
# Check your paystub and estimate how much has been withheld for
# taxes by the end of the year. This one is needed to approximate
# how much remaining tax burden will exist.
'fed_withheld_usd': 20000,
'state_withheld_usd': 15000,
}
# Now we create the DAG Model. We'll use this model for everything else.
MODEL = pylink.DAGModel([deathAnd.Taxes(),
myMeager.Income(),
anAwkward.Position(GRANTS)],
**__constants)