-
Notifications
You must be signed in to change notification settings - Fork 8
/
train.py
1919 lines (1640 loc) · 77.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Modified from:
Break-A-Scene: https://github.com/google/break-a-scene
"""
import argparse
import hashlib
import itertools
import logging
import math
import os
import warnings
from pathlib import Path
from typing import List, Optional
import random
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
import torch.utils.checkpoint
from torch.utils.data import Dataset
import numpy as np
import datasets
import diffusers
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DiffusionPipeline,
UNet2DConditionModel,
DDIMScheduler,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import HfFolder, Repository, create_repo, whoami
from PIL import Image, ImageOps
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
import ptp_utils
from ptp_utils import AttentionStore, compute_score, emd_distance_2d, get_connect, wasser_loss
from diffusers.models.cross_attention import CrossAttention
import torchvision.transforms as T
from clustering.finch import FINCH
from scipy.optimize import linear_sum_assignment as linear_assignment
from infer import infer_with_embed
from utils.loss import SupConLoss
from utils.pca import pca_visual
import json
check_min_version("0.12.0")
logger = get_logger(__name__)
def save_progress(text_encoder, placeholder_token, placeholder_token_id, accelerator, save_path):
logger.info("Saving embeddings")
learned_embeds_dict = {}
for i, ph_id in enumerate(placeholder_token_id):
learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[ph_id]
learned_embeds_dict[placeholder_token[i]] = learned_embeds.detach().cpu()
torch.save(learned_embeds_dict, save_path)
return learned_embeds_dict
def test_generation(args, placeholder_token, save_path, global_step, split_state=False):
for i, tok in enumerate(placeholder_token):
prompt = "A photo of {}".format(tok)
grid = infer_with_embed(save_path, args.pretrained_model_name_or_path, prompt, num_samples=args.num_samples, num_rows=args.num_rows)
if not os.path.exists(os.path.join(args.output_dir, 'images')):
os.mkdir(os.path.join(args.output_dir, 'images'))
grid.save(os.path.join(args.output_dir, 'images/' + prompt.replace(' ', '-') + '-step-{}.png'.format(global_step)))
if not split_state:
full_prompt = "A photo of " + " and ".join(placeholder_token)
grid = infer_with_embed(save_path, args.pretrained_model_name_or_path, full_prompt, num_samples=args.num_samples, num_rows=args.num_rows)
grid.save(os.path.join(args.output_dir, 'images/' + full_prompt.replace(' ', '-') + '-step-{}.png'.format(global_step)))
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "RobertaSeriesModelWithTransformation":
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesModelWithTransformation,
)
return RobertaSeriesModelWithTransformation
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default="stabilityai/stable-diffusion-2-1-base",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help=(
"Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
" float32 precision."
),
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--class_prompt",
type=str,
default="a photo at the beach",
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--no_prior_preservation",
action="store_false",
help="Flag to add prior preservation loss.",
dest="with_prior_preservation"
)
parser.add_argument(
"--prior_loss_weight",
type=float,
default=1.0,
help="The weight of prior preservation loss.",
)
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=(
"Minimal class images for prior preservation loss. If there are not enough images already present in"
" class_data_dir, additional images will be sampled with class_prompt."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="outputs",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--seed", type=int, default=None, help="A seed for reproducible training."
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--no_train_text_encoder",
action="store_false",
help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
dest="train_text_encoder"
)
parser.add_argument(
"--train_batch_size",
type=int,
default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--sample_batch_size",
type=int,
default=4,
help="Batch size (per device) for sampling images.",
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--phase1_train_steps",
type=int,
default="500",
help="Number of trainig steps for the first phase.",
)
parser.add_argument(
"--phase2_train_steps",
type=int,
default="0",
help="Number of trainig steps for the second phase.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=5000,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=2e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--initial_learning_rate",
type=float,
default=5e-4,
help="The LR for the Textual Inversion steps.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument(
"--lr_power",
type=float,
default=1.0,
help="Power factor of the polynomial scheduler.",
)
parser.add_argument(
"--use_8bit_adam",
action="store_true",
help="Whether or not to use 8-bit Adam from bitsandbytes.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--adam_beta1",
type=float,
default=0.9,
help="The beta1 parameter for the Adam optimizer.",
)
parser.add_argument(
"--adam_beta2",
type=float,
default=0.999,
help="The beta2 parameter for the Adam optimizer.",
)
parser.add_argument(
"--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use."
)
parser.add_argument(
"--adam_epsilon",
type=float,
default=1e-08,
help="Epsilon value for the Adam optimizer",
)
parser.add_argument(
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm."
)
parser.add_argument(
"--hub_token",
type=str,
default=None,
help="The token to use to push to the Model Hub.",
)
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="fp16",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--prior_generation_precision",
type=str,
default=None,
choices=["no", "fp32", "fp16", "bf16"],
help=(
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
),
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="For distributed training: local_rank",
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention",
action="store_true",
help="Whether or not to use xformers.",
)
parser.add_argument(
"--set_grads_to_none",
action="store_true",
help=(
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
" behaviors, so disable this argument if it causes any problems. More info:"
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
),
)
parser.add_argument("--lambda_attention", type=float, default=1e-2)
parser.add_argument("--img_log_steps", type=int, default=200)
parser.add_argument("--num_of_assets", type=int, default=1)
parser.add_argument("--initializer_tokens", type=str, nargs="+", default=[])
parser.add_argument(
"--placeholder_token",
type=str,
default="<asset>",
help="A token to use as a placeholder for the concept.",
)
parser.add_argument(
"--do_not_apply_masked_loss",
action="store_false",
help="Use masked loss instead of standard epsilon prediciton loss",
dest="apply_masked_loss"
)
parser.add_argument(
"--log_checkpoints",
action="store_true",
help="Indicator to log intermediate model checkpoints",
)
parser.add_argument(
"--num_samples",
type=int,
default=4,
help="Number of samples to generate.",
)
parser.add_argument(
"--num_rows",
type=int,
default=1,
help="Number of rows to generate.",
)
parser.add_argument(
"--init_merge_rand",
action="store_true",
help="Whether merge random tokens for initialization.",
)
parser.add_argument(
"--num_split_tokens",
type=int,
default=5,
help="The number we split the tokens.",
)
parser.add_argument(
"--weight_contrast",
type=float,
default=1.0,
help="The weight of contrastive loss.",
)
parser.add_argument(
"--merge_step",
type=int,
default=100,
help="The step we merge tokens"
)
parser.add_argument(
"--temperature",
type=float,
default=0.07,
help="The temperature of supervised contrastive loss."
)
parser.add_argument(
"--vis_pca",
action="store_true",
default=False,
help="whether to visualize pca or not",
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
args.initializer_tokens = []
assert len(args.initializer_tokens) == 0 or len(args.initializer_tokens) == args.num_of_assets
args.max_train_steps = args.phase1_train_steps + args.phase2_train_steps
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.with_prior_preservation:
if args.class_data_dir is None:
raise ValueError("You must specify a data directory for class images.")
if args.class_prompt is None:
raise ValueError("You must specify prompt for class images.")
else:
# logger is not available yet
if args.class_data_dir is not None:
warnings.warn(
"You need not use --class_data_dir without --with_prior_preservation."
)
if args.class_prompt is not None:
warnings.warn(
"You need not use --class_prompt without --with_prior_preservation."
)
return args
class TokenManager():
def __init__(self, placeholder_tokens, tokenizer, num_split_tokens):
self.all_ph_tokens = placeholder_tokens
self.num_tokens = len(self.all_ph_tokens)
self.mask_list = None
self.feat_list = None
self.ph_tokens_used = self.all_ph_tokens
self.tokenizer = tokenizer
self.num_split_tokens = num_split_tokens
self.split_state = False
def update_mask(self, mask_list_new, feat_list_new, flip):
if flip[0]:
mask_list_new = self.flip_mask(mask_list_new)
feat_list_new = self.flip_mask(feat_list_new)
if self.mask_list is None:
self.mask_list, self.feat_list = mask_list_new, feat_list_new
self.ph_tokens_used = self.all_ph_tokens[:len(self.mask_list)]
else:
self.old_to_new(mask_list_new, feat_list_new)
self.num_tokens = len(self.mask_list)
def old_to_new(self, mask_list_new, feat_list_new):
num_old = len(self.mask_list)
num_new = len(mask_list_new)
feat_mat_old = torch.stack(self.feat_list, dim=0)
feat_mat_new = torch.stack(feat_list_new, dim=0)
## avg pooling
feat32_new = feat_mat_new.reshape(feat_mat_new.shape[0], -1, 64, 64)
feat32_old = feat_mat_old.reshape(feat_mat_old.shape[0], -1, 64, 64)
feat32_new = F.avg_pool2d(feat32_new, kernel_size=2, stride=2).reshape(-1, 32*32)
feat32_old = F.avg_pool2d(feat32_old, kernel_size=2, stride=2).reshape(-1, 32*32)
feat32_new = feat32_new.cpu().numpy()
feat32_old = feat32_old.cpu().numpy()
emd_distance = emd_distance_2d(np.float32(feat32_old), np.float32(feat32_new))
row_ind, col_ind = linear_assignment(emd_distance)
self.mask_list[row_ind] = mask_list_new[col_ind]
self.feat_list[row_ind] = feat_list_new[col_ind]
if num_old < num_new:
col_ind_not = [i for i in range(num_new) if i not in col_ind]
self.mask_list = self.mask_list + mask_list_new[col_ind_not]
self.feat_list = self.feat_list + feat_list_new[col_ind_not]
self.ph_tokens_used = self.all_ph_tokens[:num_new]
def flip_mask(self, input_list):
shape = input_list[0].shape
output_list = [TF.hflip(mi.reshape(1, 64, 64)).reshape(shape) for mi in input_list]
return output_list
def current_tokens(self, tokenizer):
ph_tokens = self.ph_tokens_used
ph_tokens_ids = [tokenizer.convert_tokens_to_ids(ph_tokens[i]) for i in range(len(ph_tokens))]
return ph_tokens, ph_tokens_ids
def return_single_token(self, tokens_ids_to_use, flip, bsz):
tokens_to_use = [self.ph_tokens_used[tkn_i] for tkn_i in tokens_ids_to_use]
prompt = "a photo of " + " and ".join(tokens_to_use)
masks_to_use = [self.mask_list[tkn_i] for tkn_i in tokens_ids_to_use]
feats_to_use = [self.feat_list[tkn_i] for tkn_i in tokens_ids_to_use]
token_ids = torch.tensor(tokens_ids_to_use)
if flip[0]:
masks_to_use = self.flip_mask(masks_to_use)
feats_to_use = self.flip_mask(feats_to_use)
prompt_ids = self.tokenizer(
[prompt] * bsz,
truncation=True,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
masks_to_use = torch.stack(masks_to_use, dim=0)
feats_to_use = torch.stack(feats_to_use, dim=0)
return prompt_ids, tokens_to_use, masks_to_use, feats_to_use, token_ids
def split_tokens(self):
if not self.split_state:
self.ph_tokens_used = self.all_ph_tokens[:self.num_tokens * self.num_split_tokens]
self.mask_list = self.mask_list * self.num_split_tokens
self.feat_list = self.feat_list * self.num_split_tokens
self.split_state = True
def merge_tokens(self):
if self.split_state:
self.ph_tokens_used = self.all_ph_tokens[:self.num_tokens]
self.mask_list = self.mask_list[:self.num_tokens]
self.feat_list = self.feat_list[:self.num_tokens]
self.split_state = False
def get_token_num(self):
return self.num_tokens
def loader(self, flip, bsz):
prompt_ids_list = []
tokens_to_use_list = []
masks_to_use_list = []
feats_to_use_list = []
token_ids_list = []
for i in range(len(self.ph_tokens_used)):
prompt_ids, tokens_to_use, masks_to_use, feats_to_use, token_ids = self.return_single_token([i], flip, bsz)
prompt_ids_list.append(prompt_ids)
tokens_to_use_list.append(tokens_to_use)
masks_to_use_list.append(masks_to_use)
feats_to_use_list.append(feats_to_use)
token_ids_list.append(token_ids)
if not self.split_state:
prompt_ids, tokens_to_use, masks_to_use, feats_to_use, token_ids = self.return_single_token(list(range(len(self.ph_tokens_used))), flip, bsz)
prompt_ids_list.append(prompt_ids)
tokens_to_use_list.append(tokens_to_use)
masks_to_use_list.append(masks_to_use)
feats_to_use_list.append(feats_to_use)
token_ids_list.append(token_ids)
return prompt_ids_list, tokens_to_use_list, masks_to_use_list, feats_to_use_list, token_ids_list
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
size=512,
center_crop=False,
flip_p=0.5,
):
self.size = size
self.center_crop = center_crop
self.flip_p = flip_p
self.image_transforms = transforms.Compose(
[
transforms.Resize([size,size]),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError(
f"Instance {self.instance_data_root} images root doesn't exists."
)
instance_img_path = os.path.join(instance_data_root, "img.jpg")
self.instance_image = self.image_transforms(Image.open(instance_img_path))
self.instance_image_pil = Image.open(instance_img_path)
self._length = 1
self.null_prompt = ""
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
example["instance_images"] = self.instance_image
if random.random() > self.flip_p:
example["instance_images"] = TF.hflip(example["instance_images"])
example["flip"] = True
else:
example["flip"] = False
return example
def collate_fn(examples):
pixel_values = [example["instance_images"] for example in examples]
flip = [example["flip"] for example in examples]
pixel_values = pixel_values + pixel_values
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
batch = {
"pixel_values": pixel_values,
"flip": flip,
}
return batch
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example
def get_full_repo_name(
model_id: str, organization: Optional[str] = None, token: Optional[str] = None
):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
class ConceptExpress:
def __init__(self):
self.args = parse_args()
self.main()
def main(self):
logging_dir = Path(self.args.output_dir, self.args.logging_dir)
self.accelerator = Accelerator(
gradient_accumulation_steps=self.args.gradient_accumulation_steps,
mixed_precision=self.args.mixed_precision,
log_with=self.args.report_to,
logging_dir=logging_dir,
)
if (
self.args.train_text_encoder
and self.args.gradient_accumulation_steps > 1
and self.accelerator.num_processes > 1
):
raise ValueError(
"Gradient accumulation is not supported when training the text encoder in distributed training. "
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(self.accelerator.state, main_process_only=False)
if self.accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if self.args.seed is not None:
set_seed(self.args.seed)
# seed_torch(self.args.seed)
# Handle the repository creation
if self.accelerator.is_main_process:
os.makedirs(self.args.output_dir, exist_ok=True)
with open(os.path.join(self.args.output_dir, 'args.json'), 'w') as f:
json.dump(self.args.__dict__, f, indent=2)
# import correct text encoder class
text_encoder_cls = import_model_class_from_model_name_or_path(
self.args.pretrained_model_name_or_path, self.args.revision
)
# Load scheduler and models
self.noise_scheduler = DDPMScheduler.from_pretrained(
self.args.pretrained_model_name_or_path, subfolder="scheduler"
)
self.text_encoder = text_encoder_cls.from_pretrained(
self.args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=self.args.revision,
)
self.vae = AutoencoderKL.from_pretrained(
self.args.pretrained_model_name_or_path,
subfolder="vae",
revision=self.args.revision,
)
self.unet = UNet2DConditionModel.from_pretrained(
self.args.pretrained_model_name_or_path,
subfolder="unet",
revision=self.args.revision,
)
# Load the tokenizer
if self.args.tokenizer_name:
self.tokenizer = AutoTokenizer.from_pretrained(
self.args.tokenizer_name, revision=self.args.revision, use_fast=False
)
elif self.args.pretrained_model_name_or_path:
self.tokenizer = AutoTokenizer.from_pretrained(
self.args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=self.args.revision,
use_fast=False,
)
# Add assets tokens to tokenizer
self.placeholder_tokens = [
self.args.placeholder_token.replace(">", f"{idx}>")
for idx in range(self.args.num_of_assets)
]
num_added_tokens = self.tokenizer.add_tokens(self.placeholder_tokens)
assert num_added_tokens == self.args.num_of_assets
self.placeholder_token_ids = self.tokenizer.convert_tokens_to_ids(
self.placeholder_tokens
)
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
self.args.instance_prompt = "a photo of " + " and ".join(
self.placeholder_tokens
)
if len(self.args.initializer_tokens) > 0:
# Use initializer tokens
if not self.args.init_merge_rand:
token_embeds = self.text_encoder.get_input_embeddings().weight.data
for tkn_idx, initializer_token in enumerate(self.args.initializer_tokens):
curr_token_ids = self.tokenizer.encode(
initializer_token, add_special_tokens=False
)
# assert (len(curr_token_ids)) == 1
token_embeds[self.placeholder_token_ids[tkn_idx]] = token_embeds[
curr_token_ids[0]
]
if self.args.init_merge_rand:
print("MERGING INIT TOKENS!")
token_embeds = self.text_encoder.get_input_embeddings().weight.data
for tkn_idx, initializer_token in enumerate(self.args.initializer_tokens):
curr_token_ids = self.tokenizer.encode(
initializer_token, add_special_tokens=False
)
# assert (len(curr_token_ids)) == 1
token_embeds[self.placeholder_token_ids[tkn_idx]] = (token_embeds[curr_token_ids[0]]\
+ token_embeds[-3 * self.args.num_of_assets + tkn_idx]) / 2
else:
# Initialize new tokens randomly
token_embeds = self.text_encoder.get_input_embeddings().weight.data
token_embeds[-self.args.num_of_assets :] = token_embeds[
-3 * self.args.num_of_assets : -2 * self.args.num_of_assets
]
# Set validation scheduler for logging
self.validation_scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
self.validation_scheduler.set_timesteps(50)
# We start by only optimizing the embeddings
self.vae.requires_grad_(False)
self.unet.requires_grad_(False)
# Freeze all parameters except for the token embeddings in text encoder
self.text_encoder.text_model.encoder.requires_grad_(False)
self.text_encoder.text_model.final_layer_norm.requires_grad_(False)
self.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
if self.args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
self.unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly"
)
if self.args.gradient_checkpointing:
self.unet.enable_gradient_checkpointing()
if self.args.train_text_encoder:
self.text_encoder.gradient_checkpointing_enable()
if self.args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if self.args.scale_lr:
self.args.learning_rate = (
self.args.learning_rate
* self.args.gradient_accumulation_steps
* self.args.train_batch_size
* self.accelerator.num_processes
)
if self.args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# We start by only optimizing the embeddings
params_to_optimize = self.text_encoder.get_input_embeddings().parameters()
optimizer = optimizer_class(
params_to_optimize,
lr=self.args.initial_learning_rate,
betas=(self.args.adam_beta1, self.args.adam_beta2),
weight_decay=self.args.adam_weight_decay,
eps=self.args.adam_epsilon,
)
# Dataset and DataLoaders creation:
train_dataset = DreamBoothDataset(
instance_data_root=self.args.instance_data_dir,
size=self.args.resolution,
center_crop=self.args.center_crop,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=self.args.train_batch_size,
shuffle=True,
collate_fn=lambda examples: collate_fn(examples),
num_workers=self.args.dataloader_num_workers,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / self.args.gradient_accumulation_steps
)
if self.args.max_train_steps is None:
self.args.max_train_steps = (
self.args.num_train_epochs * num_update_steps_per_epoch
)
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
self.args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=self.args.lr_warmup_steps
* self.args.gradient_accumulation_steps,
num_training_steps=self.args.max_train_steps
* self.args.gradient_accumulation_steps,
num_cycles=self.args.lr_num_cycles,
power=self.args.lr_power,
)