-
Notifications
You must be signed in to change notification settings - Fork 8
/
ptp_utils.py
805 lines (673 loc) · 25.1 KB
/
ptp_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
"""
Copyright 2023 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import abc
import cv2
import numpy as np
import torch
from PIL import Image
from typing import Union, Tuple, List, Dict, Optional
import torch.nn.functional as nnf
import ot
import miniball
from sklearn.decomposition import PCA
from transformers import CLIPTextModel, CLIPTokenizer
from emd.emd import SinkhornOT
def load_learned_embed(learned_embed_path, pretrained_model):
if isinstance(learned_embed_path, str):
learned_embed = torch.load(learned_embed_path)
elif isinstance(learned_embed_path, dict):
learned_embed = learned_embed_path
tokenizer = CLIPTokenizer.from_pretrained(
pretrained_model,
subfolder="tokenizer"
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model, subfolder="text_encoder"
)
# Add the placeholder token in tokenizer
for placeholder_token, embed in learned_embed.items():
num_added_tokens = tokenizer.add_tokens(placeholder_token)
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {placeholder_token}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer."
)
text_encoder.resize_token_embeddings(len(tokenizer))
for placeholder_token, embed in learned_embed.items():
placeholder_token_id = tokenizer.convert_tokens_to_ids(placeholder_token)
text_encoder.get_input_embeddings().weight.data[placeholder_token_id] = embed
return text_encoder, tokenizer
def text_under_image(
image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)
):
h, w, c = image.shape
offset = int(h * 0.2)
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
font = cv2.FONT_HERSHEY_SIMPLEX
img[:h] = image
textsize = cv2.getTextSize(text, font, 1, 2)[0]
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
cv2.putText(img, text, (text_x, text_y), font, 1, text_color, 2)
return img
def view_images(
images: Union[np.ndarray, List],
num_rows: int = 1,
offset_ratio: float = 0.02,
display_image: bool = True,
):
"""Displays a list of images in a grid."""
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = (
np.ones(
(
h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1),
3,
),
dtype=np.uint8,
)
* 255
)
for i in range(num_rows):
for j in range(num_cols):
image_[
i * (h + offset) : i * (h + offset) + h :,
j * (w + offset) : j * (w + offset) + w,
] = images[i * num_cols + j]
pil_img = Image.fromarray(image_)
return pil_img
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return 0
@abc.abstractmethod
def forward(self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
h = attn.shape[0]
attn[h // 2 :] = self.forward(attn[h // 2 :], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
class EmptyControl(AttentionControl):
def forward(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {
"down_cross": [],
"mid_cross": [],
"up_cross": [],
"down_self": [],
"mid_self": [],
"up_self": [],
}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
# if attn.shape[1] <= 32**2:
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {
key: [item / self.cur_step for item in self.attention_store[key]]
for key in self.attention_store
}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
class LocalBlend:
def __call__(self, x_t, attention_store):
k = 1
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
maps = [
item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, self.max_num_words)
for item in maps
]
maps = torch.cat(maps, dim=1)
maps = (maps * self.alpha_layers).sum(-1).mean(1)
mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = nnf.interpolate(mask, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask = mask.gt(self.threshold)
mask = (mask[:1] + mask[1:]).float()
x_t = x_t[:1] + mask * (x_t - x_t[:1])
return x_t
def __init__(
self,
prompts: List[str],
words: [List[List[str]]],
tokenizer,
device,
threshold=0.3,
max_num_words=77,
):
self.max_num_words = 77
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words)
for i, (prompt, words_) in enumerate(zip(prompts, words)):
if type(words_) is str:
words_ = [words_]
for word in words_:
ind = get_word_inds(prompt, word, tokenizer)
alpha_layers[i, :, :, :, :, ind] = 1
self.alpha_layers = alpha_layers.to(device)
self.threshold = threshold
class AttentionControlEdit(AttentionStore, abc.ABC):
def step_callback(self, x_t):
if self.local_blend is not None:
x_t = self.local_blend(x_t, self.attention_store)
return x_t
def replace_self_attention(self, attn_base, att_replace):
if att_replace.shape[2] <= 16**2:
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
else:
return att_replace
@abc.abstractmethod
def replace_cross_attention(self, attn_base, att_replace):
raise NotImplementedError
def forward(self, attn, is_cross: bool, place_in_unet: str):
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
if is_cross or (
self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]
):
h = attn.shape[0] // (self.batch_size)
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
attn_base, attn_repalce = attn[0], attn[1:]
if is_cross:
alpha_words = self.cross_replace_alpha[self.cur_step]
attn_repalce_new = (
self.replace_cross_attention(attn_base, attn_repalce) * alpha_words
+ (1 - alpha_words) * attn_repalce
)
attn[1:] = attn_repalce_new
else:
attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
return attn
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: Union[
float, Tuple[float, float], Dict[str, Tuple[float, float]]
],
self_replace_steps: Union[float, Tuple[float, float]],
local_blend: Optional[LocalBlend],
tokenizer,
device,
):
super(AttentionControlEdit, self).__init__()
self.tokenizer = tokenizer
self.device = device
self.batch_size = len(prompts)
self.cross_replace_alpha = get_time_words_attention_alpha(
prompts, num_steps, cross_replace_steps, self.tokenizer
).to(self.device)
if type(self_replace_steps) is float:
self_replace_steps = 0, self_replace_steps
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(
num_steps * self_replace_steps[1]
)
self.local_blend = local_blend
class AttentionReplace(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
return torch.einsum("hpw,bwn->bhpn", attn_base, self.mapper)
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
local_blend: Optional[LocalBlend] = None,
tokenizer=None,
device=None,
):
super(AttentionReplace, self).__init__(
prompts,
num_steps,
cross_replace_steps,
self_replace_steps,
local_blend,
tokenizer,
device,
)
self.mapper = get_replacement_mapper(prompts, self.tokenizer).to(self.device)
class AttentionRefine(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
return attn_replace
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
local_blend: Optional[LocalBlend] = None,
tokenizer=None,
device=None,
):
super(AttentionRefine, self).__init__(
prompts,
num_steps,
cross_replace_steps,
self_replace_steps,
local_blend,
tokenizer,
device,
)
self.mapper, alphas = get_refinement_mapper(prompts, self.tokenizer)
self.mapper, alphas = self.mapper.to(self.device), alphas.to(self.device)
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
class AttentionReweight(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
if self.prev_controller is not None:
attn_base = self.prev_controller.replace_cross_attention(
attn_base, att_replace
)
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
return attn_replace
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
equalizer,
local_blend: Optional[LocalBlend] = None,
controller: Optional[AttentionControlEdit] = None,
tokenizer=None,
device=None,
):
super(AttentionReweight, self).__init__(
prompts,
num_steps,
cross_replace_steps,
self_replace_steps,
local_blend,
tokenizer,
device,
)
self.equalizer = equalizer.to(self.device)
self.prev_controller = controller
def get_equalizer(
text: str,
word_select: Union[int, Tuple[int, ...]],
values: Union[List[float], Tuple[float, ...]],
tokenizer,
):
if type(word_select) is int or type(word_select) is str:
word_select = (word_select,)
equalizer = torch.ones(len(values), 77)
values = torch.tensor(values, dtype=torch.float32)
for word in word_select:
inds = get_word_inds(text, word, tokenizer)
equalizer[:, inds] = values
return equalizer
def update_alpha_time_word(
alpha,
bounds: Union[float, Tuple[float, float]],
prompt_ind: int,
word_inds: Optional[torch.Tensor] = None,
):
if type(bounds) is float:
bounds = 0, bounds
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
if word_inds is None:
word_inds = torch.arange(alpha.shape[2])
alpha[:start, prompt_ind, word_inds] = 0
alpha[start:end, prompt_ind, word_inds] = 1
alpha[end:, prompt_ind, word_inds] = 0
return alpha
def get_time_words_attention_alpha(
prompts,
num_steps,
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
tokenizer,
max_num_words=77,
):
if type(cross_replace_steps) is not dict:
cross_replace_steps = {"default_": cross_replace_steps}
if "default_" not in cross_replace_steps:
cross_replace_steps["default_"] = (0.0, 1.0)
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
for i in range(len(prompts) - 1):
alpha_time_words = update_alpha_time_word(
alpha_time_words, cross_replace_steps["default_"], i
)
for key, item in cross_replace_steps.items():
if key != "default_":
inds = [
get_word_inds(prompts[i], key, tokenizer)
for i in range(1, len(prompts))
]
for i, ind in enumerate(inds):
if len(ind) > 0:
alpha_time_words = update_alpha_time_word(
alpha_time_words, item, i, ind
)
alpha_time_words = alpha_time_words.reshape(
num_steps + 1, len(prompts) - 1, 1, 1, max_num_words
)
return alpha_time_words
class ScoreParams:
def __init__(self, gap, match, mismatch):
self.gap = gap
self.match = match
self.mismatch = mismatch
def mis_match_char(self, x, y):
if x != y:
return self.mismatch
else:
return self.match
def get_matrix(size_x, size_y, gap):
matrix = []
for i in range(len(size_x) + 1):
sub_matrix = []
for j in range(len(size_y) + 1):
sub_matrix.append(0)
matrix.append(sub_matrix)
for j in range(1, len(size_y) + 1):
matrix[0][j] = j * gap
for i in range(1, len(size_x) + 1):
matrix[i][0] = i * gap
return matrix
def get_matrix(size_x, size_y, gap):
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
matrix[0, 1:] = (np.arange(size_y) + 1) * gap
matrix[1:, 0] = (np.arange(size_x) + 1) * gap
return matrix
def get_traceback_matrix(size_x, size_y):
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
matrix[0, 1:] = 1
matrix[1:, 0] = 2
matrix[0, 0] = 4
return matrix
def global_align(x, y, score):
matrix = get_matrix(len(x), len(y), score.gap)
trace_back = get_traceback_matrix(len(x), len(y))
for i in range(1, len(x) + 1):
for j in range(1, len(y) + 1):
left = matrix[i, j - 1] + score.gap
up = matrix[i - 1, j] + score.gap
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
matrix[i, j] = max(left, up, diag)
if matrix[i, j] == left:
trace_back[i, j] = 1
elif matrix[i, j] == up:
trace_back[i, j] = 2
else:
trace_back[i, j] = 3
return matrix, trace_back
def get_aligned_sequences(x, y, trace_back):
x_seq = []
y_seq = []
i = len(x)
j = len(y)
mapper_y_to_x = []
while i > 0 or j > 0:
if trace_back[i, j] == 3:
x_seq.append(x[i - 1])
y_seq.append(y[j - 1])
i = i - 1
j = j - 1
mapper_y_to_x.append((j, i))
elif trace_back[i][j] == 1:
x_seq.append("-")
y_seq.append(y[j - 1])
j = j - 1
mapper_y_to_x.append((j, -1))
elif trace_back[i][j] == 2:
x_seq.append(x[i - 1])
y_seq.append("-")
i = i - 1
elif trace_back[i][j] == 4:
break
mapper_y_to_x.reverse()
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
def get_mapper(x: str, y: str, tokenizer, max_len=77):
x_seq = tokenizer.encode(x)
y_seq = tokenizer.encode(y)
score = ScoreParams(0, 1, -1)
matrix, trace_back = global_align(x_seq, y_seq, score)
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
alphas = torch.ones(max_len)
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
mapper = torch.zeros(max_len, dtype=torch.int64)
mapper[: mapper_base.shape[0]] = mapper_base[:, 1]
mapper[mapper_base.shape[0] :] = len(y_seq) + torch.arange(max_len - len(y_seq))
return mapper, alphas
def get_refinement_mapper(prompts, tokenizer, max_len=77):
x_seq = prompts[0]
mappers, alphas = [], []
for i in range(1, len(prompts)):
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
mappers.append(mapper)
alphas.append(alpha)
return torch.stack(mappers), torch.stack(alphas)
def get_word_inds(text: str, word_place: int, tokenizer):
split_text = text.split(" ")
if type(word_place) is str:
word_place = [i for i, word in enumerate(split_text) if word_place == word]
elif type(word_place) is int:
word_place = [word_place]
out = []
if len(word_place) > 0:
words_encode = [
tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)
][1:-1]
cur_len, ptr = 0, 0
for i in range(len(words_encode)):
cur_len += len(words_encode[i])
if ptr in word_place:
out.append(i + 1)
if cur_len >= len(split_text[ptr]):
ptr += 1
cur_len = 0
return np.array(out)
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
words_x = x.split(" ")
words_y = y.split(" ")
if len(words_x) != len(words_y):
raise ValueError(
f"attention replacement edit can only be applied on prompts with the same length"
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words."
)
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
mapper = np.zeros((max_len, max_len))
i = j = 0
cur_inds = 0
while i < max_len and j < max_len:
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
if len(inds_source_) == len(inds_target_):
mapper[inds_source_, inds_target_] = 1
else:
ratio = 1 / len(inds_target_)
for i_t in inds_target_:
mapper[inds_source_, i_t] = ratio
cur_inds += 1
i += len(inds_source_)
j += len(inds_target_)
elif cur_inds < len(inds_source):
mapper[i, j] = 1
i += 1
j += 1
else:
mapper[j, j] = 1
i += 1
j += 1
return torch.from_numpy(mapper).float()
def get_replacement_mapper(prompts, tokenizer, max_len=77):
x_seq = prompts[0]
mappers = []
for i in range(1, len(prompts)):
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
mappers.append(mapper)
return torch.stack(mappers)
def compute_score(mask, eot_attn):
x_eot = eot_attn.mean(dim=(0,1))
x = (mask * eot_attn).sum(dim=(0,1)) / mask.sum(dim=(0,1))
score = x / x_eot
return score
def sliced_wasserstein_distance(mat1, mat2):
dist = np.zeros((mat1.shape[0], mat2.shape[0]))
for i in range(mat1.shape[0]):
for j in range(mat2.shape[0]):
dist1 = ot.sliced_wasserstein_distance(
mat1[i].reshape(64,64),
mat2[j].reshape(64,64))
dist2 = ot.sliced_wasserstein_distance(
mat1[i].reshape(64,64).T,
mat2[j].reshape(64,64).T)
dist[i,j] = max([dist1, dist2])
return dist
def kld_distance(mat1, mat2):
def compute_kld(mat1, mat2):
plogp = np.sum(mat1 * np.log(mat1), axis=-1, keepdims=True) # P, 1
plogq = mat1 @ np.log(mat2).T # P, Q
kld = plogp - plogq # P,Q
return kld
kld_pq = compute_kld(mat1, mat2)
kld_qp = compute_kld(mat2, mat1).T
kld = (kld_pq + kld_qp) / 2
return kld
def emd_distance_2d(mat1, mat2): # input: B, h*w
b, hw = mat1.shape
h = int(hw**0.5)
mat1 = mat1 / mat1.sum(-1, keepdims=True)
mat2 = mat2 / mat2.sum(-1, keepdims=True)
X, Y = np.meshgrid(np.arange(h), np.arange(h))
grid = np.stack((Y.flatten(), X.flatten()), axis=-1)
cost = ot.dist(grid, metric='euclidean', p=2)
dist = np.zeros((b, b))
for i in range(b-1):
for j in range(i+1, b):
dist[i, j] = ot.emd2(mat1[i], mat2[j], cost, 1)
dist[j, i] = dist[i, j]
return dist
def wasser_loss(x1, x2): # h, w
assert x1.shape == x2.shape
h, w = x1.shape
x1 = x1.reshape(-1) # h*w
x2 = x2.reshape(-1)
x1 = x1 / x1.sum()
x2 = x2 / x2.sum()
X, Y = np.meshgrid(np.arange(h), np.arange(h))
grid = np.stack((Y.flatten(), X.flatten()), axis=-1)
cost = ot.dist(grid, metric='euclidean', p=2)
cost = torch.from_numpy(cost).to(x1.device)
loss = SinkhornOT.apply(x1.unsqueeze(0).float(), x2.unsqueeze(0).float(), cost.float(), 1e-3, 200)
return loss.mean()
def get_num_mask(grid):
f = {}
def find(x):
f.setdefault(x, x)
if f[x] != x:
f[x] = find(f[x])
return f[x]
def union(x, y):
f[find(x)] = find(y)
row = grid.shape[0]
col = grid.shape[1]
for i in range(row):
for j in range(col):
if grid[i,j] == 1:
for x, y in [[-1, 0], [0, -1]]:
tmp_i = i + x
tmp_j = j + y
if 0 <= tmp_i < row and 0 <= tmp_j < col and grid[tmp_i,tmp_j] == 1:
union(tmp_i * row + tmp_j, i * row + j)
res = set()
for i in range(row):
for j in range(col):
if grid[i,j] == 1:
res.add(find((i * row + j)))
return len(res)
def get_connect(mask_mat):
b, h, w = mask_mat.shape
connect = np.zeros((b, b))
for i in range(b-1):
for j in range(i+1, b):
num1 = get_num_mask(mask_mat[i])
num2 = get_num_mask(mask_mat[j])
num_sum = num1 + num2
num = get_num_mask(mask_mat[i] + mask_mat[j])
if num < num_sum: # only one mask
connect[i,j] = 1
connect[j,i] = 1
else: # multi masks
connect[i,j] = 0
connect[j,i] = 0
return connect
def high_dim_connect(mask_mat, orig_map):
b = mask_mat.shape[0]
rng = np.random.default_rng(42)
pca = PCA(n_components=100)
mat_pca = pca.fit_transform(orig_map)
mask_mat = mask_mat.reshape(b, -1)
connect = np.ones((b, b))
for i in range(b-1):
for j in range(i+1, b):
set1 = mat_pca[mask_mat[i] == 1]
set2 = mat_pca[mask_mat[j] == 1]
c1, r1 = miniball.get_bounding_ball(set1*100, rng = rng)
c2, r2 = miniball.get_bounding_ball(set2*100, rng = rng)
if sum((c1 - c2)**2) > (r1 + r2)**2:
connect[i,j] = 0
connect[j,i] = 0
assert False
return connect