Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Kohya Hires.fix #322

Open
Priestru opened this issue Apr 29, 2024 · 0 comments
Open

Kohya Hires.fix #322

Priestru opened this issue Apr 29, 2024 · 0 comments

Comments

@Priestru
Copy link

Priestru commented Apr 29, 2024

Currently regional-prompter doesn't work with kohya-hiresfix. Is there any work-around to make both features work simultaneously, or is there any plans or intentions to ever make work?

`1,1 0.2 Horizontal
Regional Prompter Active, Pos tokens : [1, 42], Neg tokens : [166]

CD Tuner Effective : [-1.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0]
 20%|████████████████▌                                                                  | 2/10 [00:00<00:03,  2.41it/s]
*** Error completing request█████████████████████████████████▏                          | 6/10 [00:54<00:34,  8.53s/it]
*** Arguments: ('task(w3q4yok71bgw50z)', <gradio.routes.Request object at 0x000002157940B910>, 'dog\n\nBREAK\n\ncat\n\n<lora:pytorch_lora_weights_xl:0.8> \n', 'score_4, score_3, score_2, score_1', ['Neg_XL', 'Screencap'], 1, 1, 2.5, 1600, 1280, False, 0.55, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'DPM++ 2M', 'Use same scheduler', '', '', [], 0, 10, 'LCM', 'Automatic', False, '', 0.8, -1, False, -1, 0, 0, 0, 1, 1, 50, 0, 1, -4, 1, 0.4, 0.5, 2, False, '[How to set parameters? Check our github!](https://github.com/scraed/CharacteristicGuidanceWebUI/tree/main)', 'More ControlNet', 0, 1, False, False, {'ad_model': 'face_yolov8n.pt', 'ad_prompt': '', 'ad_negative_prompt': '', 'ad_confidence': 0.3, 'ad_mask_k_largest': 0, 'ad_mask_min_ratio': 0, 'ad_mask_max_ratio': 1, 'ad_x_offset': 0, 'ad_y_offset': 0, 'ad_dilate_erode': 4, 'ad_mask_merge_invert': 'None', 'ad_mask_blur': 4, 'ad_denoising_strength': 0.4, 'ad_inpaint_only_masked': True, 'ad_inpaint_only_masked_padding': 32, 'ad_use_inpaint_width_height': False, 'ad_inpaint_width': 512, 'ad_inpaint_height': 512, 'ad_use_steps': False, 'ad_steps': 28, 'ad_use_cfg_scale': False, 'ad_cfg_scale': 7, 'ad_use_checkpoint': False, 'ad_checkpoint': 'Use same checkpoint', 'ad_use_vae': False, 'ad_vae': 'Use same VAE', 'ad_use_sampler': False, 'ad_sampler': 'DPM++ 2M', 'ad_use_noise_multiplier': False, 'ad_noise_multiplier': 1, 'ad_use_clip_skip': False, 'ad_clip_skip': 1, 'ad_restore_face': False, 'ad_controlnet_model': 'None', 'ad_controlnet_module': 'None', 'ad_controlnet_weight': 1, 'ad_controlnet_guidance_start': 0, 'ad_controlnet_guidance_end': 1, 'is_api': ()}, {'ad_model': 'None', 'ad_prompt': '', 'ad_negative_prompt': '', 'ad_confidence': 0.3, 'ad_mask_k_largest': 0, 'ad_mask_min_ratio': 0, 'ad_mask_max_ratio': 1, 'ad_x_offset': 0, 'ad_y_offset': 0, 'ad_dilate_erode': 4, 'ad_mask_merge_invert': 'None', 'ad_mask_blur': 4, 'ad_denoising_strength': 0.4, 'ad_inpaint_only_masked': True, 'ad_inpaint_only_masked_padding': 32, 'ad_use_inpaint_width_height': False, 'ad_inpaint_width': 512, 'ad_inpaint_height': 512, 'ad_use_steps': False, 'ad_steps': 28, 'ad_use_cfg_scale': False, 'ad_cfg_scale': 7, 'ad_use_checkpoint': False, 'ad_checkpoint': 'Use same checkpoint', 'ad_use_vae': False, 'ad_vae': 'Use same VAE', 'ad_use_sampler': False, 'ad_sampler': 'DPM++ 2M', 'ad_use_noise_multiplier': False, 'ad_noise_multiplier': 1, 'ad_use_clip_skip': False, 'ad_clip_skip': 1, 'ad_restore_face': False, 'ad_controlnet_model': 'None', 'ad_controlnet_module': 'None', 'ad_controlnet_weight': 1, 'ad_controlnet_guidance_start': 0, 'ad_controlnet_guidance_end': 1, 'is_api': ()}, {'ad_model': 'None', 'ad_prompt': '', 'ad_negative_prompt': '', 'ad_confidence': 0.3, 'ad_mask_k_largest': 0, 'ad_mask_min_ratio': 0, 'ad_mask_max_ratio': 1, 'ad_x_offset': 0, 'ad_y_offset': 0, 'ad_dilate_erode': 4, 'ad_mask_merge_invert': 'None', 'ad_mask_blur': 4, 'ad_denoising_strength': 0.4, 'ad_inpaint_only_masked': True, 'ad_inpaint_only_masked_padding': 32, 'ad_use_inpaint_width_height': False, 'ad_inpaint_width': 512, 'ad_inpaint_height': 512, 'ad_use_steps': False, 'ad_steps': 28, 'ad_use_cfg_scale': False, 'ad_cfg_scale': 7, 'ad_use_checkpoint': False, 'ad_checkpoint': 'Use same checkpoint', 'ad_use_vae': False, 'ad_vae': 'Use same VAE', 'ad_use_sampler': False, 'ad_sampler': 'DPM++ 2M', 'ad_use_noise_multiplier': False, 'ad_noise_multiplier': 1, 'ad_use_clip_skip': False, 'ad_clip_skip': 1, 'ad_restore_face': False, 'ad_controlnet_model': 'None', 'ad_controlnet_module': 'None', 'ad_controlnet_weight': 1, 'ad_controlnet_guidance_start': 0, 'ad_controlnet_guidance_end': 1, 'is_api': ()}, {'ad_model': 'None', 'ad_prompt': '', 'ad_negative_prompt': '', 'ad_confidence': 0.3, 'ad_mask_k_largest': 0, 'ad_mask_min_ratio': 0, 'ad_mask_max_ratio': 1, 'ad_x_offset': 0, 'ad_y_offset': 0, 'ad_dilate_erode': 4, 'ad_mask_merge_invert': 'None', 'ad_mask_blur': 4, 'ad_denoising_strength': 0.4, 'ad_inpaint_only_masked': True, 'ad_inpaint_only_masked_padding': 32, 'ad_use_inpaint_width_height': False, 'ad_inpaint_width': 512, 'ad_inpaint_height': 512, 'ad_use_steps': False, 'ad_steps': 28, 'ad_use_cfg_scale': False, 'ad_cfg_scale': 7, 'ad_use_checkpoint': False, 'ad_checkpoint': 'Use same checkpoint', 'ad_use_vae': False, 'ad_vae': 'Use same VAE', 'ad_use_sampler': False, 'ad_sampler': 'DPM++ 2M', 'ad_use_noise_multiplier': False, 'ad_noise_multiplier': 1, 'ad_use_clip_skip': False, 'ad_clip_skip': 1, 'ad_restore_face': False, 'ad_controlnet_model': 'None', 'ad_controlnet_module': 'None', 'ad_controlnet_weight': 1, 'ad_controlnet_guidance_start': 0, 'ad_controlnet_guidance_end': 1, 'is_api': ()}, True, False, 1, False, False, False, 1.1, 1.5, 100, 0.7, False, False, True, False, False, 0, 'Gustavosta/MagicPrompt-Stable-Diffusion', '', False, 7, 100, 'Constant', 0, 'Constant', 0, 4, True, 'MEAN', 'AD', 1, True, -1.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, False, -1, -1, 0, 0, '1,1', 'Horizontal', '', 2, 1, [], UiControlNetUnit(enabled=False, module='none', model='None', weight=1, image=None, resize_mode='Crop and Resize', low_vram=False, processor_res=-1, threshold_a=-1, threshold_b=-1, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', inpaint_crop_input_image=False, hr_option='Both', save_detected_map=True, advanced_weighting=None), UiControlNetUnit(enabled=False, module='none', model='None', weight=1, image=None, resize_mode='Crop and Resize', low_vram=False, processor_res=-1, threshold_a=-1, threshold_b=-1, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', inpaint_crop_input_image=False, hr_option='Both', save_detected_map=True, advanced_weighting=None), UiControlNetUnit(enabled=False, module='none', model='None', weight=1, image=None, resize_mode='Crop and Resize', low_vram=False, processor_res=-1, threshold_a=-1, threshold_b=-1, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', inpaint_crop_input_image=False, hr_option='Both', save_detected_map=True, advanced_weighting=None), [], [], False, 0, 0.8, 0, 0.8, 0.5, False, False, 0.5, 8192, -1.0, False, True, True, 3, 4, 0.15, 0.3, 'bicubic', 0.5, 2, True, False, 'NONE:0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\nALL:1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1\nINS:1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0\nIND:1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0\nINALL:1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0\nMIDD:1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0\nOUTD:1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0\nOUTS:1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1\nOUTALL:1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1\nALL0.5:0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5', True, 0, 'values', '0,0.25,0.5,0.75,1', 'Block ID', 'IN05-OUT05', 'none', '', '0.5,1', 'BASE,IN00,IN01,IN02,IN03,IN04,IN05,IN06,IN07,IN08,IN09,IN10,IN11,M00,OUT00,OUT01,OUT02,OUT03,OUT04,OUT05,OUT06,OUT07,OUT08,OUT09,OUT10,OUT11', 1.0, 'black', '20', False, 'ATTNDEEPON:IN05-OUT05:attn:1\n\nATTNDEEPOFF:IN05-OUT05:attn:0\n\nPROJDEEPOFF:IN05-OUT05:proj:0\n\nXYZ:::1', False, False, False, 'tPonynai3_v41OptimizedFromV4.safetensors [0b3046dd73]', 'None', 3, '', {'save_settings': ['fp16', 'prune', 'safetensors'], 'calc_settings': ['GPU', 'fastrebasin']}, True, False, False, 'None', 'None', 'None', 'Sum', 'Sum', 'Sum', 0.5, 0.5, 0.5, True, True, True, [], [], [], [], [], [], '0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5', '0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5', '0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5', False, False, False, '', '', '', 'Normal', 'Normal', 'Normal', True, True, False, 'Matrix', 'Columns', 'Mask', 'Prompt', '1,1', '0.2', False, False, False, 'Attention', [False], '0', '0', '0.4', None, '0', '0', False, False, 'After applying other prompt processings', -1.0, 'long', '', '<|special|>, \n<|characters|>, <|copyrights|>, \n<|artist|>, \n\n<|general|>, \n\n<|quality|>, <|meta|>, <|rating|>', 1.35, False, False, 'positive', 'comma', 0, False, False, 'start', '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, False, False, False, 0, False, None, None, False, None, None, False, None, None, False, 50, [], 30, '', 4, [], 1, '', '', '', '', 'Positive', 0, ', ', 'Generate and always save', 32, 'NONE:0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\nALL:1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1\nINS:1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0\nIND:1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0\nINALL:1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0\nMIDD:1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0\nOUTD:1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0\nOUTS:1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1\nOUTALL:1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1\nALL0.5:0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5', True, 0, 'values', '0,0.25,0.5,0.75,1', 'Block ID', 'IN05-OUT05', 'none', '', '0.5,1', 'BASE,IN00,IN01,IN02,IN03,IN04,IN05,IN06,IN07,IN08,IN09,IN10,IN11,M00,OUT00,OUT01,OUT02,OUT03,OUT04,OUT05,OUT06,OUT07,OUT08,OUT09,OUT10,OUT11', 1.0, 'black', '20', False, 'ATTNDEEPON:IN05-OUT05:attn:1\n\nATTNDEEPOFF:IN05-OUT05:attn:0\n\nPROJDEEPOFF:IN05-OUT05:proj:0\n\nXYZ:::1', False, False) {}
    Traceback (most recent call last):
      File "E:\SD\stable-diffusion-webui\modules\call_queue.py", line 57, in f
        res = list(func(*args, **kwargs))
      File "E:\SD\stable-diffusion-webui\modules\call_queue.py", line 36, in f
        res = func(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\modules\txt2img.py", line 109, in txt2img
        processed = processing.process_images(p)
      File "E:\SD\stable-diffusion-webui\modules\processing.py", line 845, in process_images
        res = process_images_inner(p)
      File "E:\SD\stable-diffusion-webui\extensions\sd-webui-controlnet\scripts\batch_hijack.py", line 41, in processing_process_images_hijack
        return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
      File "E:\SD\stable-diffusion-webui\modules\processing.py", line 981, in process_images_inner
        samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
      File "E:\SD\stable-diffusion-webui\modules\processing.py", line 1328, in sample
        samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
      File "E:\SD\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 218, in sample
        samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
      File "E:\SD\stable-diffusion-webui\modules\sd_samplers_common.py", line 272, in launch_sampling
        return func()
      File "E:\SD\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 218, in <lambda>
        samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
      File "E:\SD\stable-diffusion-webui\modules\sd_samplers_lcm.py", line 72, in sample_lcm
        denoised = model(x, sigmas[i] * s_in, **extra_args)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
        return forward_call(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\modules\sd_samplers_cfg_denoiser.py", line 256, in forward
        x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
        return forward_call(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\modules\sd_samplers_lcm.py", line 62, in forward
        eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
      File "E:\SD\stable-diffusion-webui\modules\sd_samplers_lcm.py", line 47, in get_eps
        return self.inner_model.apply_model(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\modules\sd_models_xl.py", line 44, in apply_model
        return self.model(x, t, cond)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
        return forward_call(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\modules\sd_hijack_utils.py", line 18, in <lambda>
        setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
      File "E:\SD\stable-diffusion-webui\modules\sd_hijack_utils.py", line 32, in __call__
        return self.__orig_func(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\repositories\generative-models\sgm\modules\diffusionmodules\wrappers.py", line 28, in forward
        return self.diffusion_model(
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
        return forward_call(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\modules\sd_unet.py", line 91, in UNetModel_forward
        return original_forward(self, x, timesteps, context, *args, **kwargs)
      File "E:\SD\stable-diffusion-webui\repositories\generative-models\sgm\modules\diffusionmodules\openaimodel.py", line 993, in forward
        h = module(h, emb, context)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
        return forward_call(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\repositories\generative-models\sgm\modules\diffusionmodules\openaimodel.py", line 100, in forward
        x = layer(x, context)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
        return forward_call(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\repositories\generative-models\sgm\modules\attention.py", line 627, in forward
        x = block(x, context=context[i])
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
        return forward_call(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\repositories\generative-models\sgm\modules\attention.py", line 459, in forward
        return checkpoint(
      File "E:\SD\stable-diffusion-webui\repositories\generative-models\sgm\modules\diffusionmodules\util.py", line 165, in checkpoint
        return CheckpointFunction.apply(func, len(inputs), *args)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\autograd\function.py", line 539, in apply
        return super().apply(*args, **kwargs)  # type: ignore[misc]
      File "E:\SD\stable-diffusion-webui\repositories\generative-models\sgm\modules\diffusionmodules\util.py", line 182, in forward
        output_tensors = ctx.run_function(*ctx.input_tensors)
      File "E:\SD\stable-diffusion-webui\repositories\generative-models\sgm\modules\attention.py", line 478, in _forward
        self.attn2(
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
        return self._call_impl(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
        return forward_call(*args, **kwargs)
      File "E:\SD\stable-diffusion-webui\extensions\sd-webui-regional-prompter\scripts\attention.py", line 417, in forward
        ox = matsepcalc(x, contexts, mask, self.pn, 1)
      File "E:\SD\stable-diffusion-webui\extensions\sd-webui-regional-prompter\scripts\attention.py", line 208, in matsepcalc
        out = out.reshape(out.size()[0], dsh, dsw, out.size()[2]) # convert to main shape.
    RuntimeError: shape '[1, 50, 40, 640]' is invalid for input of size 3559040

---
`
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant