Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

converts torch model with dtype double (float64) to keras with float32 #140

Open
HarHarLinks opened this issue Jan 19, 2022 · 1 comment
Labels

Comments

@HarHarLinks
Copy link

HarHarLinks commented Jan 19, 2022

I don't know whether this issue is actually with this project (the "pytorch2onnx" part) or rather onnx2keras. Please move it if applicable.


Describe the bug
I'm trying to convert a model that uses double (float64) datatype throughout, it looks like this, created with torch.jit.script.

graph(%input_0 : Double(1, 2, strides=[2, 1], requires_grad=0, device=cpu),
      %layers.0.weight : Double(100, 2, strides=[2, 1], requires_grad=0, device=cpu),
      %layers.0.bias : Double(100, strides=[1], requires_grad=0, device=cpu),
      %layers.2.weight : Double(100, 100, strides=[100, 1], requires_grad=0, device=cpu),
      %layers.2.bias : Double(100, strides=[1], requires_grad=0, device=cpu),
      %layers.4.weight : Double(2, 100, strides=[100, 1], requires_grad=0, device=cpu),
      %layers.4.bias : Double(2, strides=[1], requires_grad=0, device=cpu)):
  %7 : Double(1, 100, strides=[100, 1], device=cpu) = onnx::Gemm[alpha=1., beta=1., transB=1](%input_0, %layers.0.weight, %layers.0.bias) # python3.7/site-packages/torch/nn/functional.py:1848:11
  %8 : Double(1, 100, strides=[100, 1], device=cpu) = onnx::Relu(%7) # python3.7/site-packages/torch/nn/functional.py:1299:17
  %9 : Double(1, 100, strides=[100, 1], device=cpu) = onnx::Gemm[alpha=1., beta=1., transB=1](%8, %layers.2.weight, %layers.2.bias) # python3.7/site-packages/torch/nn/functional.py:1848:11
  %10 : Double(1, 100, strides=[100, 1], device=cpu) = onnx::Relu(%9) # python3.7/site-packages/torch/nn/functional.py:1299:17
  %output_0 : Double(1, 2, strides=[2, 1], requires_grad=0, device=cpu) = onnx::Gemm[alpha=1., beta=1., transB=1](%10, %layers.4.weight, %layers.4.bias) # python3.7/site-packages/torch/nn/functional.py:1848:11
  return (%output_0)
DEBUG:onnx2keras:Output TF Layer -> KerasTensor(type_spec=TensorSpec(shape=(None, 100), dtype=tf.float32, name=None), name='7/BiasAdd:0', description="created by layer '7'")
DEBUG:onnx2keras:Output TF Layer -> KerasTensor(type_spec=TensorSpec(shape=(None, 100), dtype=tf.float32, name=None), name='8/Relu:0', description="created by layer '8'")
DEBUG:onnx2keras:Output TF Layer -> KerasTensor(type_spec=TensorSpec(shape=(None, 100), dtype=tf.float32, name=None), name='9/BiasAdd:0', description="created by layer '9'")
DEBUG:onnx2keras:Output TF Layer -> KerasTensor(type_spec=TensorSpec(shape=(None, 100), dtype=tf.float32, name=None), name='10/Relu:0', description="created by layer '10'")
DEBUG:onnx2keras:Output TF Layer -> KerasTensor(type_spec=TensorSpec(shape=(None, 2), dtype=tf.float32, name=None), name='output_0/BiasAdd:0', description="created by layer 'output_0'")

Expected behavior
double -> double

Script

    # 1) load PyTorch model
    model = torch.jit.load(args.torch)

    # 2) create dummy variable with correct shape
    shape = (2)
    input_np = np.random.uniform(low=0, high=1, size=(1,2))
    input_var = Variable(torch.DoubleTensor(input_np))

    # 3) trace the model using dummy variable
    k_model = pytorch_to_keras(model, input_var, [shape], verbose=True)

    # 4) save keras (Tensorflow format) model
    # https://www.tensorflow.org/guide/keras/save_and_serialize#how_to_save_and_load_a_model
    k_model.save(args.keras)
@HarHarLinks
Copy link
Author

I was able to overcome this by this method: https://stackoverflow.com/questions/47895494/how-to-convert-all-layers-of-a-pretrained-keras-model-to-a-different-dtype-from

i.e. since my model uses only float64, I changed converter.py of onnx2keras thusly:

@@ -3,6 +3,7 @@
 """
 
 from tensorflow import keras
+from tensorflow.keras import backend as K
 import logging
 import inspect
 import collections
@@ -48,6 +49,8 @@
     :param change_ordering: change ordering to HWC (experimental)
     :return: Keras model
     """
+    K.set_floatx('float64')
+
     # Use channels first format by default.
     keras_fmt = keras.backend.image_data_format()
     keras.backend.set_image_data_format('channels_first')

However I'm posting this here merely as a hardcoded workaround, so this still should be addressed properly by someone who actually understands how the converter works.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant