Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ValueError: Layer weight shape (112,) not compatible with provided weight shape (11,) #123

Open
HeaderZzj opened this issue Feb 1, 2021 · 0 comments

Comments

@HeaderZzj
Copy link

Hi. When I use codes as follow to convert my pytorch model to keras and set change_ordering=True,
net = load_model(model, pthfile)
net.eval()

# Make dummy variables (and checking if the model works)
input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
input_var = Variable(torch.FloatTensor(input_np))
output = model(input_var)

# Convert the model!
k_model = \
    pytorch_to_keras(model, input_var, (3, 224, 224),
                     verbose=True, name_policy='short',
                     change_ordering=True)

I got the ValueError as the title said.

And my model is as:
Downsample:
self.stage1 = nn.Sequential(
conv_bn(3, overall_channel[0], 3, 2),
InvertedResidual(overall_channel[0], overall_channel[1], 1, mid_channel[0])
)
self.stage2 = nn.Sequential(
InvertedResidual(overall_channel[1], overall_channel[2], 2, mid_channel[1]),
InvertedResidual(overall_channel[2], overall_channel[3], 1, mid_channel[2])
)
self.stage3 = nn.Sequential(
InvertedResidual(overall_channel[3], overall_channel[4], 2, mid_channel[3]),
InvertedResidual(overall_channel[4], overall_channel[5], 1, mid_channel[4]),
InvertedResidual(overall_channel[5], overall_channel[6], 1, mid_channel[5])
)
self.stage4 = nn.Sequential(
InvertedResidual(overall_channel[6], overall_channel[7], 2, mid_channel[6]),
InvertedResidual(overall_channel[7], overall_channel[8], 1, mid_channel[7]),
InvertedResidual(overall_channel[8], overall_channel[9], 1, mid_channel[8]),
InvertedResidual(overall_channel[9], overall_channel[10], 1, mid_channel[9]),
InvertedResidual(overall_channel[10], overall_channel[11], 1, mid_channel[10]),
InvertedResidual(overall_channel[11], overall_channel[12], 1, mid_channel[11]),
InvertedResidual(overall_channel[12], overall_channel[13], 1, mid_channel[12])
)
self.stage5 = nn.Sequential(
InvertedResidual(overall_channel[13], overall_channel[14], 2, mid_channel[13]),
InvertedResidual(overall_channel[14], overall_channel[15], 1, mid_channel[14]),
InvertedResidual(overall_channel[15], overall_channel[16], 1, mid_channel[15]),
InvertedResidual(overall_channel[16], overall_channel[17], 1, mid_channel[16])
)

Upsample:

    self.trainsit1 = ResidualBlock(overall_channel[17], overall_channel[13])
    self.trainsit2 = ResidualBlock(overall_channel[13], overall_channel[6])
    self.trainsit3 = ResidualBlock(overall_channel[6], overall_channel[3])
    self.trainsit4 = ResidualBlock(overall_channel[3], overall_channel[1])
    self.trainsit5 = ResidualBlock(overall_channel[1], 16)

    self.deconv1 = nn.ConvTranspose2d(overall_channel[13], overall_channel[13],
                                      groups=1, kernel_size=4, stride=2, padding=(1,1), bias=False)
    self.deconv2 = nn.ConvTranspose2d(overall_channel[6], overall_channel[6],
                                      groups=1, kernel_size=4, stride=2, padding=(1,1), bias=False)
    self.deconv3 = nn.ConvTranspose2d(overall_channel[3], overall_channel[3],
                                      groups=1, kernel_size=4, stride=2, padding=(1,1), bias=False)
    self.deconv4 = nn.ConvTranspose2d(overall_channel[1], overall_channel[1],
                                      groups=1, kernel_size=4, stride=2, padding=(1,1), bias=False)
    self.deconv5 = nn.ConvTranspose2d(16, 16,
                                      groups=1, kernel_size=4, stride=2, padding=(1,1), bias=False)

RS and InvertedRS are as:
class InvertedResidual(nn.Module):
def init(self, inp, oup, stride, midp, dilation=1):
super(InvertedResidual, self).init()
self.stride = stride
assert stride in [1, 2]
self.use_res_connect = self.stride == 1 and inp == oup

    self.conv = nn.Sequential(
        # pw
        nn.Conv2d(inp, midp, kernel_size=1, stride=1, padding=(0,0), dilation=1, groups=1, bias=False),
        nn.BatchNorm2d(num_features=midp, eps=1e-05, momentum=0.1, affine=True),
        nn.ReLU(inplace=True),
        # dw
        nn.Conv2d(midp, midp,
                  kernel_size=3, stride=stride, padding=dilation, dilation=dilation,
                  groups=midp, bias=False),
        nn.BatchNorm2d(num_features=midp, eps=1e-05, momentum=0.1, affine=True),
        nn.ReLU(inplace=True),
        # pw-linear
        nn.Conv2d(midp, oup, kernel_size=1, stride=1, padding=(0,0), dilation=1, groups=1, bias=False),
        nn.BatchNorm2d(num_features=oup, eps=1e-05, momentum=0.1, affine=True),
    )

def forward(self, x):
    if self.use_res_connect:
        return x + self.conv(x)
    else:
        return self.conv(x)

class ResidualBlock(nn.Module):
def init(self, inp, oup, stride=1):
super(ResidualBlock, self).init()

    self.block = nn.Sequential(
        conv_dw(inp, oup, 3, stride=stride),
        nn.Conv2d(in_channels=oup, out_channels=oup, kernel_size=3, stride=1, padding=(1,1), groups=oup, bias=False),
        nn.BatchNorm2d(num_features=oup, eps=1e-05, momentum=0.1, affine=True),
        nn.ReLU(inplace=True),
        nn.Conv2d(in_channels=oup, out_channels=oup, kernel_size=1, stride=1, padding=(0,0), bias=False),
        nn.BatchNorm2d(num_features=oup, eps=1e-05, momentum=0.1, affine=True),
    )
    if inp == oup:
        self.residual = None
    else:
        self.residual = nn.Sequential(
            nn.Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, stride=1, padding=(0,0), bias=False),
            nn.BatchNorm2d(num_features=oup, eps=1e-05, momentum=0.1, affine=True),
        )
    self.relu = nn.ReLU(inplace=True)

def forward(self, x):
    residual = x

    out = self.block(x)
    if self.residual is not None:
        residual = self.residual(x)

    out += residual
    out = self.relu(out)
    return out

I'm about to converting my pth model to .h5 model and futher to tfjs model.
So it would be very helpful if you could teach me to solve this problem.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant