-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
126 lines (97 loc) · 3.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from __future__ import print_function
import tensorflow as tf
import os
from dataset import mnist
from tensorflow.examples.tutorials.mnist import input_data
data=mnist()
#mnist=input_data.read_data_sets('MNIST_data/',one_hot=True)
# Parameters
learning_rate = 0.001
training_iters = 100000
batch_size = 128
display_step = 10
n_input = 784 #inputsize
n_classes = 10 #outputsize
dropout = 0.5
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32)
def conv2d(x, W, b, strides=1):
# Conv2D wrapper
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k=2):
#maxpool wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],padding='SAME')
def conv_net(x, weights, biases, dropout):
x = tf.reshape(x, shape=[-1, 28, 28, 1])
# conv layer 1
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
# Max Pooling
conv1 = maxpool2d(conv1, k=2)
# conv layer 2
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
# Max pooling
conv2 = maxpool2d(conv2, k=2)
# Fully connected layer
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
fc1 = tf.nn.dropout(fc1, dropout)
#prediction
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
weights = {
# 5x5 conv, 1 input, 32 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
# fully connected, 7*7*64 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
#prediction
pred = conv_net(x, weights, biases, keep_prob)
#cost function
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
#optimizing with Adamoptimizer
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
#checking accuracy of prediction
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
#initializing tensorflow graph variables
init = tf.global_variables_initializer()
saver=tf.train.Saver() #saver for saving the model
with tf.Session() as sess:
sess.run(init)
step = 1
#Training
#for each step calculating loss and accuracy
while step * batch_size < training_iters:
#batch=mnist.train.next_batch(batch_size)
batch_x, batch_y = data.next_batch(batch_size)
# Running the optimizer
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
keep_prob: dropout})
if step % display_step == 0:
# for each 1000 steps loss,accuracy are printed
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,y: batch_y,keep_prob: 1.})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))
step += 1
print("Optimization Finished!")
filename=r'model.ckpt'
f=os.path.realpath(__file__)
path=os.path.join(os.path.dirname(os.path.abspath(f)),filename)
#Saving model for further use
save_path=saver.save(sess,path)
batch_x, batch_y = data.next_batch(256,True)
#batch=mnist.test.next_batch(256)
print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: batch_x,y: batch_y,keep_prob: 1.}))