-
Notifications
You must be signed in to change notification settings - Fork 49
/
fit_model2_mikhail.py
483 lines (407 loc) · 17.1 KB
/
fit_model2_mikhail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import cfg
import kappa as pykappa
import pandas as pd
import numpy as np
import scipy.sparse as sp
import cPickle as pickle
import re
from nltk.stem import PorterStemmer
from bs4 import BeautifulSoup
from difflib import SequenceMatcher as seq_matcher
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import TruncatedSVD
from sklearn.cross_validation import KFold, StratifiedKFold, StratifiedShuffleSplit
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.svm import LinearSVC, LinearSVR
import logging
logging.basicConfig(format='[%(asctime)s] %(message)s', level=logging.INFO)
logging.info("Mikhail's model_2 learner script")
# load data from dump
logging.info("load data")
train_df = pd.read_pickle(cfg.path_processed + 'train_df')
test_df = pd.read_pickle(cfg.path_processed + 'test_df')
sampleSubmission = pd.read_csv(cfg.path_sampleSubmission)
# fetch Dmitry's extended querys
ext_train_df = pd.read_csv(cfg.path_features + 'train_ext_top10.csv')
ext_test_df = pd.read_csv(cfg.path_features + 'test_ext_top10.csv')
train_df['title_ext'] = ext_train_df['product_title']
test_df['title_ext'] = ext_test_df['product_title']
logging.info("Collect BoWs")
# collect BoWs -- for query
vect = TfidfVectorizer(ngram_range=(1,2), min_df=2, encoding='utf-8')
vect.fit(list(train_df['query_stem'].values) + list(test_df['query_stem'].values))
X_query_tr = vect.transform(train_df['query_stem'].values)
X_query_te = vect.transform(test_df['query_stem'].values)
# fot title
vect.fit(list(train_df['title_stem'].values) + list(test_df['title_stem'].values))
X_tmp_tr = vect.transform(train_df['title_stem'].values).tocsc()
X_tmp_te = vect.transform(test_df['title_stem'].values).tocsc()
freq_tr = np.array(X_tmp_tr.sum(axis=0))[0]
freq_te = np.array(X_tmp_te.sum(axis=0))[0]
col_mask = np.where((freq_tr * freq_te)!=0)[0]
X_title_tr = X_tmp_tr[:, col_mask].tocsr()
X_title_te = X_tmp_te[:, col_mask].tocsr()
# for description
vect.fit(list(train_df['desc_stem'].values) + list(test_df['desc_stem'].values))
X_tmp_tr = vect.transform(train_df['desc_stem'].values).tocsc()
X_tmp_te = vect.transform(test_df['desc_stem'].values).tocsc()
freq_tr = np.array(X_tmp_tr.sum(axis=0))[0]
freq_te = np.array(X_tmp_te.sum(axis=0))[0]
col_mask = np.where((freq_tr * freq_te)!=0)[0]
X_desc_tr = X_tmp_tr[:, col_mask].tocsr()
X_desc_te = X_tmp_te[:, col_mask].tocsr()
# assemble in one
X_all_tr = sp.hstack([X_query_tr, X_title_tr, X_desc_tr]).tocsr()
X_all_te = sp.hstack([X_query_te, X_title_te, X_desc_te]).tocsr()
# coding query by id
le = LabelEncoder()
le.fit(train_df['query_stem'].values)
qid_tr = le.transform(train_df['query_stem'].values)
qid_te = le.transform(test_df['query_stem'].values)
y_all_tr = train_df['median_relevance'].values
stemmer = PorterStemmer()
## Stemming functionality
class stemmerUtility(object):
#Stemming functionality
@staticmethod
def stemPorter(review_text):
porter = PorterStemmer()
preprocessed_docs = []
for doc in review_text:
final_doc = []
for word in doc:
final_doc.append(porter.stem(word))
preprocessed_docs.append(final_doc)
return preprocessed_docs
def correct_string(s):
s = s.replace("hardisk", "hard drive")
s = s.replace("extenal", "external")
s = s.replace("soda stream", "sodastream")
s = s.replace("fragance", "fragrance")
s = s.replace("16 gb", "16gb")
s = s.replace("32 gb", "32gb")
s = s.replace("500 gb", "500gb")
s = s.replace("2 tb", "2tb")
s = s.replace("shoppe", "shop")
s = s.replace("refrigirator", "refrigerator")
s = s.replace("assassinss", "assassins")
s = s.replace("harleydavidson", "harley davidson")
s = s.replace("harley-davidson", "harley davidson")
return s
def assemble_counts(train):
X = []
titles = []
for i in range(len(train.id)):
query = correct_string(train['query'][i].lower())
title = correct_string(train.product_title[i].lower())
query = (" ").join([z for z in BeautifulSoup(query).get_text(" ").split(" ")])
title = (" ").join([z for z in BeautifulSoup(title).get_text(" ").split(" ")])
query=re.sub("[^a-zA-Z0-9]"," ", query)
title=re.sub("[^a-zA-Z0-9]"," ", title)
query= (" ").join([stemmer.stem(z) for z in query.split(" ")])
title= (" ").join([stemmer.stem(z) for z in title.split(" ")])
query=" ".join(query.split())
title=" ".join(title.split())
#dist_qt = compression_distance(query,title)
dist_qt2 = 1 - seq_matcher(None,query,title).ratio()
query_len = len(query.split())
title_len = len(title.split())
tmp_title = title
word_counter_qt = 0
lev_dist_arr = []
for q in query.split():
lev_dist_q = []
for t in title.split():
lev_dist = seq_matcher(None,q,t).ratio()
if lev_dist > 0.9:
word_counter_qt += 1
tmp_title += ' '+q # add such words to title to increase their weights in tfidf
lev_dist_q.append(lev_dist)
lev_dist_arr.append(lev_dist_q)
last_word_in = 0
for t in title.split():
lev_dist = seq_matcher(None,query.split()[-1],t).ratio()
if lev_dist > 0.9:
last_word_in = 1
lev_max = 0
for item in lev_dist_arr:
lev_max_q = max(item)
lev_max += lev_max_q
lev_max = 1- lev_max/len(lev_dist_arr)
word_counter_qt_norm = word_counter_qt/query_len
X.append([query_len,title_len,word_counter_qt,lev_max,last_word_in,word_counter_qt_norm, dist_qt2])
titles.append(tmp_title)
X = np.array(X).astype(np.float)
return X, np.array(titles)
logging.info("Assemble counts")
X_counts_tr, titles_tr = assemble_counts(train_df)
X_counts_te, titles_te = assemble_counts(test_df)
logging.info("Assemble additional features")
feat_list = [
u'w2v_sim',
u'w2v_dist',
u'tsne_title_1',
u'tsne_title_2',
u'tsne_qt_1',
u'tsne_qt_2',
u'cosine_qt_orig',
u'cosine_qt_stem',
u'cosine_qd_stem',
u'set_qt_stem'
]
X_additional_tr = train_df[feat_list].as_matrix()
X_additional_te = test_df[feat_list].as_matrix()
logging.info("Load w2v-based features")
X_w2v_tr, X_w2v_te = pickle.load(open(cfg.path_processed + 'X_w2v.pickled'))
logging.info("Load counts")
X_counts2_tr = np.loadtxt(cfg.path_features + 'train_ext_counts_top10.txt')
X_counts2_te = np.loadtxt(cfg.path_features + 'test_ext_counts_top10.txt')
# Learinig routines (similar to model1 -- see description here)
feat_list = [u'w2v_sim',
u'cosine_qt_stem',
u'cosine_qd_stem',
u'set_qt_stem',
u'tsne_title_1',
u'tsne_title_2',
u'tsne_qt_1',
u'tsne_qt_2',
]
def make_mf_sliced_regression(subset_tr, subset_te, clf, n_round=3, target_col='median_relevance'):
print '\n [make_mf_slice]'
print clf
mf_tr = np.zeros(len(subset_tr))
mf_te = np.zeros(len(subset_te))
#query-slice
for cur_query in subset_tr.query_stem.value_counts().index:
mask_tr = subset_tr.query_stem == cur_query
mask_te = subset_te.query_stem == cur_query
# build Bow
vect = CountVectorizer(min_df=1, ngram_range=(1,2))
txts = (list((subset_tr[mask_tr]['title_ext']).values) +
list((subset_te[mask_te]['title_ext']).values))
vect.fit(txts)
X_loc_base = vect.transform(list((subset_tr[mask_tr]['title_ext']).values)).todense()
X_loc_hold = vect.transform(list((subset_te[mask_te]['title_ext']).values)).todense()
y_loc_train = subset_tr[mask_tr][target_col].values
# intersect terms
feat_counts = np.array(np.sum(X_loc_base, axis=0))[0] * np.array(np.sum(X_loc_hold, axis=0))[0]
feat_mask = np.where(feat_counts>0)[0]
# build final feats matrix
X_loc_base = np.hstack((X_loc_base[:, feat_mask], subset_tr[mask_tr][feat_list]))
X_loc_hold = np.hstack((X_loc_hold[:, feat_mask], subset_te[mask_te][feat_list]))
# metafeatures iterators
tmp_tr = np.zeros(sum(mask_tr))
tmp_te = np.zeros(sum(mask_te))
#print y_loc_train.shape, X_loc_base.shape
for i in range(n_round):
kf = KFold(len(y_loc_train), n_folds=2, shuffle=True, random_state=42+i*1000)
for ind_tr, ind_te in kf:
X_tr = X_loc_base[ind_tr]
X_te = X_loc_base[ind_te]
y_tr = y_loc_train[ind_tr]
y_te = y_loc_train[ind_te]
clf.fit(X_tr, y_tr)
tmp_tr[ind_te] += clf.predict(X_te)
tmp_te += clf.predict(X_loc_hold)*0.5
mf_tr[mask_tr.values] = tmp_tr / n_round
mf_te[mask_te.values] = tmp_te / n_round
y_valid = subset_tr[target_col].values
kappa = pykappa.quadratic_weighted_kappa(y_valid, np.round(mf_tr))
acc = np.mean(y_valid == np.round(mf_tr))
print '[{}] kappa:{}, acc:{}'.format(i, kappa, acc)
return (mf_tr, mf_te)
def make_mf_sliced_classification(subset_tr, subset_te, clf, n_round=3, target_col='median_relevance'):
print '\n [make_mf_slice]'
print clf
mf_tr = np.zeros(len(subset_tr))
mf_te = np.zeros(len(subset_te))
#query-slice
for cur_query in subset_tr.query_stem.value_counts().index:
mask_tr = subset_tr.query_stem == cur_query
mask_te = subset_te.query_stem == cur_query
# build Bow
vect = CountVectorizer(min_df=1, ngram_range=(1,2))
txts = (list((subset_tr[mask_tr]['title_ext']).values) +
list((subset_te[mask_te]['title_ext']).values))
vect.fit(txts)
X_loc_base = vect.transform(list((subset_tr[mask_tr]['title_ext']).values)).todense()
X_loc_hold = vect.transform(list((subset_te[mask_te]['title_ext']).values)).todense()
y_loc_train = subset_tr[mask_tr][target_col].values
# intersect terms
feat_counts = np.array(np.sum(X_loc_base, axis=0))[0] * np.array(np.sum(X_loc_hold, axis=0))[0]
feat_mask = np.where(feat_counts>0)[0]
# build final feats matrix
X_loc_base = np.hstack((X_loc_base[:, feat_mask], subset_tr[mask_tr][feat_list]))
X_loc_hold = np.hstack((X_loc_hold[:, feat_mask], subset_te[mask_te][feat_list]))
# metafeatures iterators
tmp_tr = np.zeros(sum(mask_tr))
tmp_te = np.zeros(sum(mask_te))
#print y_loc_train.shape, X_loc_base.shape
for i in range(n_round):
kf = KFold(len(y_loc_train), n_folds=2, shuffle=True, random_state=42+i*1000)
for ind_tr, ind_te in kf:
X_tr = X_loc_base[ind_tr]
X_te = X_loc_base[ind_te]
y_tr = y_loc_train[ind_tr]
y_te = y_loc_train[ind_te]
clf.fit(X_tr, y_tr)
tmp_tr[ind_te] += clf.predict(X_te)
tmp_te += clf.predict(X_loc_hold)*0.5
mf_tr[mask_tr.values] = tmp_tr / n_round
mf_te[mask_te.values] = tmp_te / n_round
y_valid = subset_tr[target_col].values
kappa = pykappa.quadratic_weighted_kappa(y_valid, np.round(mf_tr))
acc = np.mean(y_valid == np.round(mf_tr))
print '[{}] kappa:{}, acc:{}'.format(i, kappa, acc)
return (mf_tr, mf_te)
def make_mf_regression(X ,y, clf, qid, X_test, n_round=3):
print clf
mf_tr = np.zeros(X.shape[0])
mf_te = np.zeros(X_test.shape[0])
for i in range(n_round):
skf = StratifiedKFold(qid, n_folds=2, shuffle=True, random_state=42+i*1000)
for ind_tr, ind_te in skf:
X_tr = X[ind_tr]
X_te = X[ind_te]
y_tr = y[ind_tr]
y_te = y[ind_te]
clf.fit(X_tr, y_tr)
mf_tr[ind_te] += clf.predict(X_te)
mf_te += clf.predict(X_test)*0.5
y_pred = np.round(clf.predict(X_te))
kappa = pykappa.quadratic_weighted_kappa(y_te, y_pred)
acc = np.mean(y_te == y_pred)
print 'pred[{}] kappa:{}, acc:{}'.format(i, kappa, acc)
return (mf_tr / n_round, mf_te / n_round)
def make_mf_classification4(X ,y, clf, qid, X_test, n_round=3):
print clf
mf_tr = np.zeros((X.shape[0], 5))
mf_te = np.zeros((X_test.shape[0], 5))
for i in range(n_round):
skf = StratifiedKFold(qid, n_folds=2, shuffle=True, random_state=42+i*1000)
for ind_tr, ind_te in skf:
X_tr = X[ind_tr]
X_te = X[ind_te]
y_tr = y[ind_tr]
y_te = y[ind_te]
clf.fit(X_tr, y_tr)
mf_tr[ind_te, 4] += clf.predict(X_te)
mf_te[:, 4] += clf.predict(X_test)*0.5
try:
mf_tr[ind_te, :4] += clf.predict_proba(X_te)
mf_te[:, :4] += clf.predict_proba(X_test)*0.5
except:
mf_tr[ind_te, :4] += clf.decision_function(X_te)
mf_te[:,:4] += clf.decision_function(X_test)*0.5
y_pred = np.round(clf.predict(X_te))
kappa = pykappa.quadratic_weighted_kappa(y_te, y_pred)
acc = np.mean(y_te == y_pred)
print 'prob[{}] kappa:{}, acc:{}'.format(i, kappa, acc)
print
return (mf_tr / n_round, mf_te / n_round)
def make_mf_classification2(X ,y, clf, qid, X_test, n_round=3):
print clf
mf_tr = np.zeros((X.shape[0], 2))
mf_te = np.zeros((X_test.shape[0], 2))
for i in range(n_round):
skf = StratifiedKFold(qid, n_folds=2, shuffle=True, random_state=42+i*1000)
for ind_tr, ind_te in skf:
X_tr = X[ind_tr]
X_te = X[ind_te]
y_tr = y[ind_tr]
y_te = y[ind_te]
clf.fit(X_tr, y_tr)
try:
mf_tr[ind_te] += clf.predict_proba(X_te)
mf_te += clf.predict_proba(X_test)*0.5
except:
mf_tr[ind_te, 0] += clf.decision_function(X_te)
mf_te[:, 0] += clf.decision_function(X_test)*0.5
y_pred = np.round(clf.predict(X_te))
kappa = pykappa.quadratic_weighted_kappa(y_te, y_pred)
acc = np.mean(y_te == y_pred)
print 'prob[{}] kappa:{}, acc:{}'.format(i, kappa, acc)
print
return (mf_tr / n_round, mf_te / n_round)
def learn_class_separators(clf, X_1, X_2, n_round):
class_sep_4 = make_mf_classification2(X_1, (y_base<4), clf, q_base, X_2, n_round)
class_sep_3 = make_mf_classification2(X_1, (y_base<3), clf, q_base, X_2, n_round)
class_sep_2 = make_mf_classification2(X_1, (y_base<2), clf, q_base, X_2, n_round)
class_sep_23 = make_mf_classification2(X_1, (y_base<4)*(y_base>1), clf, q_base, X_2, n_round)
ret_tr = np.hstack((class_sep_4[0], class_sep_3[0], class_sep_2[0], class_sep_23[0]))
ret_te = np.hstack((class_sep_4[1], class_sep_3[1], class_sep_2[1], class_sep_23[1]))
return (ret_tr[:, 1::2], ret_te[:, 1::2])
logging.info("Assing names to featues")
X_base_tf = X_all_tr
X_hold_tf = X_all_te
X_base_add = X_additional_tr
X_hold_add = X_additional_te
X_base_w2v = X_w2v_tr
X_hold_w2v = X_w2v_te
X_base_counts = X_counts_tr
X_hold_counts = X_counts_te
X_base_counts2 = X_counts2_tr
X_hold_counts2 = X_counts2_te
q_base = qid_tr
q_hold = qid_te
y_base = y_all_tr
logging.info("Learn metafeatures")
# make features
rf_add_sep = learn_class_separators(
RandomForestClassifier(n_estimators=500, n_jobs=-1,criterion='entropy', random_state=42),
np.hstack((X_base_add, X_base_counts2)),
np.hstack((X_hold_add, X_hold_counts2)),
n_round=5)
mfs_rf_reg = make_mf_sliced_regression(
train_df,
test_df,
RandomForestRegressor(n_estimators=500, max_features=0.3, random_state=42),
n_round=3)
mfs_rf_clf = make_mf_sliced_regression(
train_df,
test_df,
RandomForestClassifier(n_estimators=500, max_features=0.3, random_state=42),
n_round=3)
mf_lsvc_clf = make_mf_classification4(
X_base_tf,
y_base,
LinearSVC(),
q_base,
X_hold_tf,
n_round=10)
mf_lsvr_reg = make_mf_regression(
X_base_tf,
y_base,
LinearSVR(),
q_base,
X_hold_tf,
n_round=10)
logging.info("Assemble 2nd level features")
X_train = np.hstack(
(X_base_add,
mf_lsvr_reg[0][:, np.newaxis],
mf_lsvc_clf[0],
rf_add_sep[0],
mfs_rf_clf[0][:, np.newaxis],
mfs_rf_reg[0][:, np.newaxis],
X_base_counts,
X_base_counts2))
X_test = np.hstack(
(X_hold_add,
mf_lsvr_reg[1][:, np.newaxis],
mf_lsvc_clf[1],
rf_add_sep[1],
mfs_rf_clf[1][:, np.newaxis],
mfs_rf_reg[1][:, np.newaxis],
X_hold_counts,
X_hold_counts2))
logging.info("Fit 2nd level model")
rfR = RandomForestRegressor(n_estimators=25000, n_jobs=-1, min_samples_split=3, random_state=42)
rfR.fit(X_train, y_base)
y_pred_rfR = rfR.predict(X_test)
logging.info("Dumping prediction")
np.savetxt(cfg.path_processed + 'mikhail_model2.txt', y_pred_rfR)
logging.info("Done!")