-
Notifications
You must be signed in to change notification settings - Fork 0
/
talk-ip.tex
1338 lines (1261 loc) · 46.5 KB
/
talk-ip.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{beamer}
% opacity bugfix: see http://tug.org/pipermail/pdftex/2007-December/007480.html
\pdfpageattr {/Group << /S /Transparency /I true /CS /DeviceRGB>>}
\usepackage[utf8]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage{tikz}
\usetikzlibrary{%
arrows,%
calc,%
fit,%
patterns,%
plotmarks,%
shapes.geometric,%
shapes.misc,%
shapes.symbols,%
shapes.arrows,%
shapes.callouts,%
shapes.multipart,%
shapes.gates.logic.US,%
shapes.gates.logic.IEC,%
er,%
automata,%
backgrounds,%
chains,%
topaths,%
trees,%
petri,%
mindmap,%
matrix,%
calendar,%
folding,%
fadings,%
through,%
patterns,%
positioning,%
scopes,%
decorations.fractals,%
decorations.shapes,%
decorations.text,%
decorations.pathmorphing,%
decorations.pathreplacing,%
decorations.footprints,%
decorations.markings,%
shadows}
%\usepackage{animate}
\usepackage{amssymb, amsmath, amsfonts, enumerate}
\usepackage{eurosym}
\usepackage{pifont}
%\usepackage{bbold}
\newcommand\hmmax{0}
\usepackage{bm}
%\usepackage{dsfont}
\usepackage{pxfonts}
\usepackage{xcolor}
\usepackage{url}
\usepackage{xargs}
%\usepackage[normalem]{ulem}
\usepackage[backend=bibtex,style=authoryear,dashed=false]{biblatex}
\addbibresource{all.bib}
\addbibresource{lundrefs.bib}
\renewcommand{\bibfont}{\normalfont\scriptsize}
\setlength{\bibhang}{3ex}
\usepackage{hyperref}
\usetheme[official=false,department=none]{tue2008}
%\usefonttheme{default}
%\usetheme[secheader]{Boadilla}
%\setbeamercovered{transparent}
%\setbeamercovered{invisible}
%\setbeamertemplate{navigation symbols}{}
%\setbeamertemplate{bibliography item}[text] % numbered references
%\useoutertheme{infolines}
%\setbeamertemplate{headline}{}
%\setbeamertemplate{footline}{\hspace*{5mm}\hfill\insertframenumber\hspace*{5mm}\vspace{3mm}}
%\setbeamercolor{alerted text}{fg=orange!80!black}
% ------------------------------------------------------------------------------
\newcommand{\vcenterbox}[1]{\ensuremath{\vcenter{\hbox{#1}}}}
%
\newcommand{\reals}{\mathbb{R}}
\newcommand{\posreals}{\reals_{>0}}
\newcommand{\posrealszero}{\reals_{\ge 0}}
\newcommand{\naturals}{\mathbb{N}}
\newcommand{\dd}{\,\mathrm{d}}
\newcommand{\pr}{P}
\newcommand{\lpr}{\underline{P}}
\newcommand{\upr}{\overline{P}}
\newcommand{\lnex}{\underline{E}}
\newcommand{\unex}{\overline{E}}
\newcommand{\middlemid}{\;\middle\vert\;} % stretchable \mid
\newcommand{\prsymbol}{\operatorname{P}}
\newcommand{\lprsymbol}{\operatorname{\underline{P}}}
\newcommand{\uprsymbol}{\operatorname{\overline{P}}}
\newcommand{\expecsymbol}{\operatorname{E}}
\newcommand{\lexpecsymbol}{\operatorname{\underline{E}}}
\newcommand{\uexpecsymbol}{\operatorname{\overline{E}}}
\newcommand{\mediansymbol}{\operatorname{Median}}
\newcommand{\varsymbol}{\operatorname{Var}}
\newcommand{\sdsymbol}{\operatorname{SD}}
\newcommand{\covsymbol}{\operatorname{Cov}}
\newcommand{\pmfsymbol}{p}
\newcommand{\pdfsymbol}{f}
\newcommand{\cdfsymbol}{\operatorname{F}}
\newcommand{\risksymbol}{\rho}
\newcommand{\helper}[3]{
\ifthenelse{\equal{#3}{}}{%
{#1}_{#2}}{%
{#1}_{#2}\left({#3}\right)}{%
}
}
%\newcommand{\pr}[2][]{\helper{\prsymbol}{#1}{#2}}
%\newcommand{\lpr}[2][]{\helper{\lprsymbol}{#1}{#2}}
%\newcommand{\upr}[2][]{\helper{\uprsymbol}{#1}{#2}}
\newcommand{\expec}[2][]{\helper{\expecsymbol}{#1}{#2}}
\newcommand{\median}[2][]{\helper{\mediansymbol}{#1}{#2}}
\newcommand{\var}[2][]{\helper{\varsymbol}{#1}{#2}}
%\newcommand{\sd}[2][]{\helper{\sdsymbol}{#1}{#2}}
\newcommand{\cov}[2][]{\helper{\covsymbol}{#1}{#2}}
\newcommand{\risk}[2][]{\helper{\risksymbol}{#1}{#2}}
\newcommand{\pmf}[2][]{\helper{\pmfsymbol}{#1}{#2}}
\newcommand{\pdf}[2][]{\helper{\pdfsymbol}{#1}{#2}}
\newcommand{\cdf}[2][]{\helper{\cdfsymbol}{#1}{#2}}
\newcommand{\chelper}[5]{
\ifthenelse{\equal{#3}{}}{%
{#1}_{#2}\left(#4 \middlemid #5 \right)}{%
{#1}_{#2\mid #3}\left(#4 \middlemid #5 \right)}{%
}
}
\newcommand{\cpr}[2]{\chelper{\prsymbol}{}{}{#1}{#2}}
\newcommand{\clpr}[2]{\chelper{\lprsymbol}{}{}{#1}{#2}}
\newcommand{\cupr}[2]{\chelper{\uprsymbol}{}{}{#1}{#2}}
\newcommand{\cexpec}[2]{\chelper{\expecsymbol}{}{}{#1}{#2}}
\newcommand{\clexpec}[2]{\chelper{\lexpecsymbol}{}{}{#1}{#2}}
\newcommand{\cuexpec}[2]{\chelper{\uexpecsymbol}{}{}{#1}{#2}}
\newcommand{\cmedian}[2]{\chelper{\mediansymbol}{}{}{#1}{#2}}
\newcommand{\cvar}[2]{\chelper{\varsymbol}{}{}{#1}{#2}}
\newcommand{\ccov}[2]{\chelper{\covsymbol}{}{}{#1}{#2}}
\newcommand{\csd}[2]{\chelper{\sdsymbol}{}{}{#1}{#2}}
\newcommand{\crisk}[2]{\chelper{\risksymbol}{}{}{#1}{#2}}
\newcommandx{\cpmf}[4][1=,2=]{\chelper{\pmfsymbol}{#1}{#2}{#3}{#4}}
\newcommandx{\cpdf}[4][1=,2=]{\chelper{\pdfsymbol}{#1}{#2}{#3}{#4}}
\newcommandx{\ccdf}[4][1=,2=]{\chelper{\cdfsymbol}{#1}{#2}{#3}{#4}}
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\bs}[1]{\boldsymbol{#1}}
\renewcommand{\vec}[1]{{\bm#1}}
\newcommand{\uz}{^{(0)}} % upper zero
\newcommand{\un}{^{(n)}} % upper n
\newcommand{\ui}{^{(i)}} % upper i
\newcommand{\uell}{^{(\ell)}} % upper ell
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\Rsys}{R_\text{sys}}
\newcommand{\lRsys}{\ul{R}_\text{sys}}
\newcommand{\uRsys}{\ol{R}_\text{sys}}
\newcommand{\Fsys}{F_\text{sys}}
\newcommand{\lFsys}{\ul{F}_\text{sys}}
\newcommand{\uFsys}{\ol{F}_\text{sys}}
\def\Tsys{T_\text{sys}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{Var}}
\newcommand{\sd}{\operatorname{sd}}
\newcommand{\wei}{\operatorname{Wei}} % Weibull Distribution
\newcommand{\ig}{\operatorname{IG}} % Inverse Gamma Distribution
\newcommand{\ber}{\operatorname{Bernoulli}}
\newcommand{\bin}{\operatorname{Binomial}}
\newcommand{\be}{\operatorname{Beta}}
\newcommand{\bebin}{\operatorname{Beta-binomial}}
\newcommand{\norm}{\operatorname{N}}
\newcommand{\then}{\structure{$\rule[0.35ex]{2ex}{0.5ex}\!\!\!\blacktriangleright$}}
\newcommand{\play}{\structure{$\blacktriangleright$}}
%\newcommand{\gplus}{\structure{\rule[0.45ex]{1.4ex}{0.4ex}\hspace{-0.9ex}\rule[0.0ex]{0.4ex}{1.3ex}\hspace{0.5ex}}}
\newcommand{\gplus}{\structure{\textbf{+}}}
%\newcommand{\gmins}{\structure{\rule[0.45ex]{1.4ex}{0.4ex}}}
\newcommand{\gmins}{\structure{\textbf{--}}}
\newcommand{\gexcl}{\structure{\rule{0.3ex}{0ex}\textbf{!}\rule{0.3ex}{0ex}}}
\input{nydefs.tex}
\input{nycoldefs.tex}
%%\def\blau#1{{\color{lmugreen2}#1}}
%\def\rot#1{{\color{red}#1}}
%\def\gruen#1{{\color{blue}#1}}
\newcommand{\x}{\vec{x}}
\def\tnow{t_\text{now}}
\def\tpnow{t^+_\text{now}}
\newcommand{\comp}[1]{\raisebox{-1mm}{\tikz{\node[%type1
rectangle,rounded corners=0mm,draw,fill=tuepmsgreen!70,thick,inner sep=0pt,minimum size=4mm]{#1};}}}
\newcommand*\cancel[2][very thick]{\tikz[baseline] \node [cross out, draw=tueorange, anchor=text, inner sep=0pt, #1]{#2};}
\newcommand{\cyansec}[1]{\textcolor{tuecyan}{\large\bf #1}}
\newcommand{\cyanalert}[1]{\textcolor{tuecyan}{#1}}
\newcommand{\bluesec}[1]{\textcolor{tueblue}{\large\bf #1}}
\newcommand{\bluealert}[1]{\textcolor{tueblue}{#1}}
\setbeamertemplate{itemize item}{\tiny\raise1.5pt\hbox{\color{tueblue}$\blacktriangleright$}}
% ------------------------------------------------------------------------------
\title{Imprecise Probability:\\ General Ideas and Statistical Approaches}
\author{Gero Walter}
\institute{ Eindhoven University of Technology, Eindhoven, NL\\[2ex]
\url{[email protected]} \\[2ex]
\includegraphics[height=9mm]{logos/tuelogo} \\[2ex] %\quad
%\includegraphics[height=9mm]{logos/dinalog-hp} }
Thanks to Matthias Troffaes for introductory slides.}
\date{Hannover 2016-12-07}
\begin{document}
\frame{
\titlepage
}
\addtocounter{framenumber}{-1}
\begin{frame}
\frametitle{Requirements for an Uncertainty Model}
\begin{block}{Operational}
How can uncertainty be reliably
\begin{itemize}
\item measured?
\item communicated?
\end{itemize}
\end{block}
\pause
\begin{block}{Inference}
How can we use our uncertainty model for
\begin{itemize}
\item statistical reasoning?
\item decision making?
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Uncertainty via Probability}
\begin{definition}
An \alert{event} is a statement that may, or may not,
hold \\
---typically, something that may happen in the future.
\\[1ex]
Notation: $A$, $B$, $C$, \dots
\end{definition}
\begin{exampleblock}{Examples}
\begin{itemize}
\item tomorrow, it will rain
\item in the next year, at most 3 components will fail
\end{itemize}
\end{exampleblock}
\pause
\begin{alertblock}{}
how to express our uncertainty regarding events?
\end{alertblock}
\end{frame}
\begin{frame}
\frametitle{Probability: Definition}
\begin{definition}
The \alert{probability of an event} is a number between $0$ and $1$.
\\[1ex]
Notation: $P(A)$, $P(B)$, $P(C)$, \dots
\end{definition}
\begin{exampleblock}{Examples}
\begin{itemize}
\item for $A$ = `tomorrow, it will rain' \\
my probability $P(A)$ is $0.2$
\item for $B$ = `in the next year, at most 3 components will fail' \\
my probability $P(B)$ is $0.0173$
\end{itemize}
\end{exampleblock}
\pause
\begin{alertblock}{}
what do these numbers actually mean? \\
how would you measure them?
\end{alertblock}
\end{frame}
\begin{frame}
\frametitle{Probability: Interpretation}
\begin{block}{Interpretation: Trivial Cases}
$P(A)=0$ $\iff$ $A$ is practically impossible {\hfill \scriptsize logically?}\\
$P(A)=1$ $\iff$ $A$ is practically certain
\end{block}
\pause
\begin{alertblock}{}
what about values between $0$ and $1$, such as $P(A)=0.2$?
\end{alertblock}
\pause
\begin{block}{Interpretation: General Case}
\begin{itemize}
\item it's (like) a \alert{frequency}
\item it's a degree of belief (\play\ \alert{betting rate})
\item it's something else
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Probability: Frequency Interpretation}
$P(A)=0.2$ means:
\begin{itemize}%[<+->]
\item in 1 out of 5 times, it rains tomorrow \\
\uncover<2->{\textbf{??? (tomorrow is not repeatable!)}}
\item<3-> on a `day like this', in 1 out of 5 times, it rains the next day
\end{itemize}
\uncover<4->{%
\begin{block}{Frequency Interpretation}
\begin{itemize}
\item[\gplus] intuitive, easy to understand
\item[\gmins] needs \alert{reference class}, only for \alert{repeatable events}
\item[\gmins] needs plenty of data, or strong symmetry assumptions
\item[\gexcl] aleatory
\end{itemize}
\end{block}}
\end{frame}
\begin{frame}
\frametitle{Probability: Betting Interpretation}
$P(A)=0.2$ means:
\begin{itemize}[<+->]
\item I would \textit{now} pay at most \euro 0.2 \\
if \textit{tomorrow} I am paid \euro 1 in case it rains
\item I would \textit{tomorrow} pay \euro 1 in case it rains \\
if I am \textit{now} paid at least \euro 0.2
\end{itemize}
\uncover<3->{%
\begin{center}
\begin{tikzpicture}
\draw (-4,0) -- (4,0);
\draw[line width=1mm,tuegreen] (-4,0) -- (0,0);
\draw[line width=1mm,tueblue] ( 0,0) -- (4,0);
\draw ( 0,-0.1) -- ( 0,0.1) node[above] {$P(A)$};
\draw[dashed] ( 0,0) -- (0,-0.5);
\draw (-2,0.1) node[above] {$p$} -- (-2,-0.1) node[anchor=north east,xshift=1cm] {buy $A$ for price $p$};
\draw ( 2,0.1) node[above] {$q$} -- ( 2,-0.1) node[anchor=north west,xshift=-1cm] {sell $A$ for price $q$};
\end{tikzpicture}
\end{center}}
\vspace*{-1.5ex}
\uncover<4->{%
\begin{block}{Betting Interpretation (degree of belief)}
\begin{itemize}
\item[\gplus] no reference class, works also for \alert{one-shot events}
\item[\gmins] needs plenty of elicitation or plenty of data
\item[\gexcl] epistemic
\end{itemize}
\end{block}}
\end{frame}
\begin{frame}
\frametitle{Dealing With Severe Uncertainty}
\begin{alertblock}{}
in case of \alert{partial elicitation} and/or \alert{sparse data}
\\
it may be hard to specify an exact probability
\\
\textbf{but you may still confidently bound your probability}
\end{alertblock}
\vspace{2em}
this becomes more and more relevant \\
as problems become larger and larger
\end{frame}
\begin{frame}
\frametitle{Bounding Methods} %\normalsize Dealing With Severe Uncertainty:
% \begin{columns}
% \begin{column}{\textwidth}
% \begin{block}{Confidence intervals} %[]
\structure{Confidence intervals (Frequentist Statistics)}
\begin{itemize}
\setlength{\itemsep}{0pt}
\setlength{\parskip}{0pt}
\setlength{\parsep}{0pt}
\item[\gmins] choice of confidence level $\alpha$?
\item[\gmins] p-value fallacy \parencite{2004:gigerenzer}\\ a.k.a.\ prosecutor's fallacy
\item[\gplus] no prior needed, only likelihood
\end{itemize}
% \end{block}
\vspace*{1ex}
% \begin{block}{Credible intervals}
\pause
\structure{Credible intervals (Bayesian Statistics)}
\begin{itemize}
\setlength{\itemsep}{0pt}
\setlength{\parskip}{0pt}
\setlength{\parsep}{0pt}
\item[\gmins] choice of credible level $\alpha$?
\item[\gmins] choice of prior?
\item[\gmins] dealing with prior ignorance and prior-data conflict?
\item[\gplus] no p-value fallacy
\end{itemize}
% \end{block}
% \end{column}
% \end{columns}
% \begin{columns}
% \begin{column}{0.8\textwidth}
\vspace*{1ex}
% \begin{block}{Interval probability (bounding probabilities directly)}
\pause
\structure{Interval probability (bounding probabilities directly)}
\begin{itemize}
\setlength{\itemsep}{0pt}
\setlength{\parskip}{0pt}
\setlength{\parsep}{0pt}
\item[\gmins] choice of prior bounds?
\item[\gplus] no confidence / credible level issues
\item[\gplus] no prior ignorance issues
\item[\gplus] no p-value fallacy
\end{itemize}
% \end{block}
% \end{column}
% \begin{column}{0.2\textwidth}
% \end{column}
% \end{columns}
% {\scriptsize other: info-gap \cite{2001:benhaim}, \dots}
\end{frame}
\begin{frame}
\frametitle{Lower and Upper Probability: Definition}
\begin{definition}
The \alert{lower and upper probability of an event}\\ are numbers between $0$ and $1$.
\\[1ex]
Notation: $\lpr(A)$, $\upr(A)$, \dots
\end{definition}
\begin{exampleblock}{Examples}
\begin{itemize}
\item for $A$ = `tomorrow, it will rain' \\
my lower probability $\lpr(A)$ is $0.1$ \\
my upper probability $\upr(A)$ is $0.4$
\end{itemize}
\end{exampleblock}
\pause
\begin{alertblock}{}
what do these numbers actually mean? \\
how would you measure them?
\end{alertblock}
\end{frame}
\begin{frame}
\frametitle{$\lpr$ and $\upr$: Betting Interpretation}
$\lpr(A)=0.1$ and $\upr(A)=0.4$ means:
\begin{itemize}[<+->]
\item I would \textit{now} pay at most \euro 0.1 \\
if \textit{tomorrow} I am paid \euro 1 in case it rains
\item I would \textit{tomorrow} pay \euro 1 in case it rains \\
if I am \textit{now} paid at least \euro 0.4
\end{itemize}
\vspace*{-3ex}
\uncover<3->{%
\begin{center}
\begin{tikzpicture}
\draw (-4,0) -- (4,0);
\draw[line width=1mm,tuegreen] (-4,0) -- (-1,0);
\draw[line width=1mm,tueblue] (1,0) -- (4,0);
\draw[line width=1mm,tueorange] (-1,0) -- (1,0);
\draw (-1,-0.1) -- (-1,0.1) node[above] {$\lpr(A)$};
\draw[dashed] (-1,0) -- (-1,-0.5);
\draw ( 1,-0.1) -- ( 1,0.1) node[above] {$\upr(A)$};
\draw[dashed] ( 1,0) -- ( 1,-0.5);
\draw (0,-0.1) node[below] {\small \textcolor{tueorange}{undecisive}};
\draw (-2,0.1) node[above] {$p$} -- (-2,-0.1) node[anchor=north east,xshift= 0.8cm] {\small buy $A$ for price $p$};
\draw ( 2,0.1) node[above] {$q$} -- ( 2,-0.1) node[anchor=north west,xshift=-0.8cm] {\small sell $A$ for price $q$};
\end{tikzpicture}
\end{center}}
\vspace*{-1ex}
\uncover<4->{%
\begin{block}{Betting Interpretation}
\begin{itemize}
\item[\gplus] no reference class, works also for \alert{one-shot events}
\item[\gplus] works with partial elicitation and / or sparse data
\item[\gexcl] epistemic
\end{itemize}
\end{block}}
% {\scriptsize \qquad frequency interpretation?}
\end{frame}
\begin{frame}
\frametitle{Events: Formal Definition}
\begin{definition}
The \alert{possibility space} $\Omega$ is \\
the set of all possible outcomes of the problem at hand.
\end{definition}
\vspace*{-1ex}
\begin{exampleblock}{Example}
interested in reliability of a system with $5$ components \\
e.g. number of components that fail in the next year \\
$\Omega=\{0,1,2,3,4,5\}$
\end{exampleblock}
\pause
\begin{definition}
An \alert{event} is a subset of $\Omega$.
%\\[1ex]
\hspace{2em}
Notation: $A$, $B$, $C$, \dots
\end{definition}
\vspace*{-1ex}
\begin{exampleblock}{Example}
in the next year, at most 3 components will fail
\\
would be represented by the event $A=\{0,1,2,3\}$
\end{exampleblock}
\end{frame}
\begin{frame}
\frametitle{$\lpr$ and $\upr$: Formal Definition}
\begin{definition}
A \alert{lower probability} $\lpr$
\\
maps
\textit{every}
event $A\subseteq\Omega$ to a real number $\lpr(A)$.
\\[1ex]
The \alert{upper probability} $\upr$ is simply defined as \\
$\upr(A)=1-\lpr(A^c)$, for all $A\subseteq\Omega$
\end{definition}
\begin{itemize}
\item<2-> $A^c$ = \alert{complement} (or \alert{negation}) of $A$ = all elements {\it not} in $A$
% {\small
% \begin{exampleblock}{\small Example}
% complement of `at most 3 components will fail' ($A=\{0,1,2,3\}$)
% \\ is `at least 4 components will fail' ($A^c=\{4,5\}$)
% \end{exampleblock}}
\item<3-> the identity $\upr(A)=1-\lpr(A^c)$ is implied
by the betting interpretation %\\
% {\scriptsize \hfill see exercises}
\item<4-> \textit{every} event $\leftrightarrow$ sparse data? \\
we can always set $\lpr(A)=0$ and $\lpr(A^c)=0$ ($\iff\upr(A)=1$)!
\item<5-> $\lpr$ specification for related events may allow to raise $\lpr(A)$ (correcting for consistency)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{$\lpr$ and $\upr$: Credal Sets}
\begin{definition}
A \alert{probability measure} $\pr$
\\
maps
\textit{every}
event $A\subseteq\Omega$ to a number $\pr(A)$
in $[0,1]$
and satisfies
\begin{columns}
\begin{column}{0.2\textwidth}
\begin{itemize}
\item $\pr(\emptyset)=0$,
\end{itemize}
\end{column}
\begin{column}{0.3\textwidth}
\begin{itemize}
\item $\pr(\Omega)=1$, and
\end{itemize}
\end{column}
\begin{column}{0.45\textwidth}
\begin{itemize}
\item $\pr(A)=\sum_{\omega\in A}\pr(\{\omega\})$.
\end{itemize}
\end{column}
\end{columns}
\end{definition}
\pause
\begin{definition}
The \alert{credal set} $\mathcal{M}$
of $\lpr$
\\ is the set of all probability measures $\pr$ for which
\\
$\lpr(A)\le\pr(A)\le\upr(A)$ for all $A\subseteq\Omega$.
\end{definition}
\pause
\begin{block}{Sensitivity Interpretation of $\lpr$ and $\upr$}
One of the probability measures $\pr$ in the credal set $\mathcal{M}$\\
is the correct one,
\textit{but we do not know which}.
\end{block}
\pause
% \begin{center}
\textbf{crucial: no distribution over $\mathcal{M}$ assumed!} %\\
% (why not?)
% \end{center}
\end{frame}
\begin{frame}{Sensitivity Interpretation for Credal Sets}
\uncover<1->{%
\begin{block}{Uncertainty about probability statements}
\centerline{smaller credal set $=$ more precise probability statements}
\vspace*{1ex}
\parbox[t]{0.45\textwidth}{\centering \textbf{Lottery A}\\
Number of winning tickets:\\
exactly known as 5 out of 100\\
\play\ $P(\text{win}) = 5/100$}
\qquad
\parbox[t]{0.45\textwidth}{\centering \textbf{Lottery B}\\
Number of winning tickets:\\
not exactly known, supposedly\\
between 1 and 7 out of 100\\
\play\ $P(\text{win}) = [1/100,\, 7/100]$}
\end{block}}
\begin{itemize}
\item<2-> Separate uncertainty \emph{within the model} (probability statements)\\
from uncertainty \emph{about the model} (how certain about statements) %(which parameters).
\item<3-> Systematic sensitivity analysis, robust Bayesian approach
\end{itemize}
\end{frame}
\iffalse % ---------------------------------------------------------------------
\begin{frame}
\frametitle{$\lpr(\cdot)$ and $\upr(\cdot)$:
% Avoiding Sure Loss, Natural Extension, and Coherence}
Properties***}
\begin{definition}
We say that $\lpr$ \alert{avoid sure loss} if its credal set $\mathcal{M}$ is non-empty.
\end{definition}
\begin{definition}
If $\lpr$ avoids sure loss, its \alert{natural extension} $\lnex$ is defined, for all $A\subseteq\Omega$, as:
\begin{align*}
\lnex(A)=\min_{\pr\in\mathcal{M}}\pr(A)
&&
\left(\text{or equivalently, }\unex(A)=\max_{\pr\in\mathcal{M}}\pr(A)\right)
\end{align*}
\end{definition}
\begin{definition}
We say that $\lpr$ is \alert{coherent} if it avoids sure loss, and, for all $A\subseteq\Omega$:
\begin{align*}
\lpr(A)=\lnex(A)
&&
\Big(\text{or equivalently, }\upr(A)=\unex(A)\Big)
\end{align*}
\end{definition}
\end{frame}
\begin{frame}
\frametitle{$\lpr(\cdot)$ and $\upr(\cdot)$: Sensitivity Interpretation}
\begin{block}{Sensitivity Interpretation of $\lpr$}
One of the probability measures $\pr$ in the credal set $\mathcal{M}$ is
the correct one,
\textit{but we do not know which}.
\end{block}
% \begin{itemize}
% \item $\lpr$ is coherent precisely when it is
% \\ \alert{uniquely determined} by $\mathcal{M}$
% \item if $\lpr$ is not coherent, but avoids sure loss
% \\
% then its natural extension $\lnex$ \alert{corrects} $\lpr$
% \end{itemize}
\begin{center}
\textbf{crucial: no distribution over $\mathcal{M}$ assumed!} %\\
% (why not?)
\end{center}
\end{frame}
\fi % --------------------------------------------------------------------------
\begin{frame}{Bayesian Inference}
\vspace*{-2ex}
\begin{align*}
\begin{array}{ccccl}
\uncover<1->{\text{expert info} & + & \text{data} & \to & \text{complete picture} \\[1.5ex]}
\uncover<2->{\text{prior distribution} & + & \text{sample distribution} & \to & \text{posterior distribution} \\[1.5ex]
f(p) & \times & f(s \mid p) & \propto & f(p \mid s) \\
& & & & \qquad\text{\bluealert{\play\ Bayes' Rule}} \\}
%\uncover<3->{\downarrow & & \downarrow & & \hspace*{3ex} \downarrow \\
\uncover<4->{\text{Beta prior}} & & \uncover<3->{\text{Binomial}} & & \uncover<5->{\text{Beta posterior}} \\
\uncover<4->{} & & \uncover<3->{\text{distribution}} & & \uncover<5->{\qquad \text{\bluealert{\play\ conjugacy}}}\\[1ex]
\uncover<4->{p \sim \be(\az,\bz)} & & \uncover<3->{s \mid p \sim \bin(n,p)} & & \uncover<5->{p \mid s \sim \be(\an,\bn)}
\end{array}
\end{align*}
\vspace*{-3ex}
\begin{tikzpicture}
\uncover<3-5>{%
\node at (-0.5,0) {\includegraphics[width=0.25\textwidth]{figs/smallfig-binom}};}
\uncover<4-5>{%
\node at (-4.5,0) {\includegraphics[width=0.25\textwidth]{figs/smallfig-prior}};}
\uncover<5>{%
\node at ( 3.5,0) {\includegraphics[width=0.25\textwidth]{figs/smallfig-posterior}};}
\end{tikzpicture}
\end{frame}
\begin{frame}{Bayesian Inference with Credal Sets}
\begin{block}{Bayesian inference with sets of priors}
\uncover<1->{%
set of priors $\MZ$ $\to$ sets of posteriors $\MN$\\
by updating element by element }\\[1ex]
\uncover<2->{%
the Generalized Bayes Rule \parencite[GBR,][]{1991:walley}\\
ensures \emph{coherence} (a consistency property) }\\[1ex]
\uncover<3->{%
Bounds for inferences (point estimate, \ldots) by min / max over $\MN$}
\end{block}
\uncover<4->{%
this offers advantages over usual Bayesian inference in case of}
\begin{itemize}
\item<4-> prior ignorance / weakly informative priors
\item<5-> prior-data conflict
\end{itemize}
\end{frame}
\begin{frame}{`Non-informative' Priors}
How to construct a prior if we do not have a lot of information?
\pause
\begin{block}{Laplace: Principle of Indifference}
Use the uniform distribution.
\end{block}
\pause
Obvious issue: this depends on the parametrisation!
\pause
\begin{exampleblock}{Example}
An object of 1kg has uncertain volume $V$ between $1\ell$ and $2\ell$.
\begin{itemize}
\item<5-> Uniform distribution over volume $V$ $\implies$ $E(V)=1.5\ell$.
\item<6-> Uniform distribution over density $\rho=1/V$ $\implies$ \\
$E(V)=E(1/\rho)=\int_{0.5}^1 2/\rho\, \dd\rho=2(\ln 1-\ln 0.5)=1.39\ell$
\end{itemize}
\end{exampleblock}
\uncover<7->{%
\alert{The uniform distribution does not really model prior ignorance!}}
\uncover<8->{%
{\small (Jeffreys prior is transformation-invariant,\\ but depends on the sample space and can break decision making!)}}
\end{frame}
\begin{frame}{Prior Ignorance via Sets of Probabilities}
How to construct a prior if we do not have a lot of information?
\pause
\begin{block}{Boole: Probability Bounding}
Use the set of all probability distributions (\alert{vacuous model}).
\end{block}
Results no longer depend on parametrisation!
\pause
\begin{exampleblock}{Example}
An object of 1kg has uncertain volume $V$ between $1\ell$ and $2\ell$.
\begin{itemize}
\item<4-> Set of all distributions over volume $V$ $\implies$ $E(V)\in[1,2]$.
\item<5-> Set of all distributions over density $\rho=1/V$\\
\hspace*{31ex} $\implies$ $E(V)=E(1/\rho)\in[1,2]$
\end{itemize}
\end{exampleblock}
\vspace*{8.25ex}
\end{frame}
\begin{frame}{Prior Ignorance via Sets of Probabilities}
\begin{theorem}
The set of posterior distributions
resulting from a vacuous set of prior distributions
is again vacuous,
regardless of the likelihood.
\end{theorem}
\alert{We can never learn anything when starting from a vacuous set of priors!}
\pause
\begin{alertblock}{Solution: Near-Vacuous Sets of Priors}
Only insist that the prior predictive, or other classes of inferences,\\ are vacuous.
\end{alertblock}
This can be done using sets of conjugate priors\\
(\cite{1996:walley::idm}; Benavoli and Zaffalon \cite*{2012:benavolizaffalon,2015:benavolizaffalon}).
\end{frame}
\begin{frame}{Example: Imprecise Beta Model (IBM)}
\begin{itemize}[<+->]
\item Bernoulli observations: 0/1 observations (failure/success)
\item given: $s$ successes in $n$ i.i.d.\ trials and strong prior information
\item we are, e.g., interested in probability for success in next trial
\end{itemize}
\vspace*{-2ex}
\begin{tikzpicture}
\uncover<4>{%
\node {\parbox{\textwidth}{%
\begin{block}{Beta-Binomial Model}
\begin{tabular}{r|lcll}
data : & $s \mid p$ & $\sim$ & $\bin(n,p)$ \\ %[0.5ex]
conjugate prior: & $p \mid \az, \bz$ & $\sim$ & $\be(\az,\, \bz)$ & \phantom{$\be(\nzg, \yzr)$} \rule{0ex}{2.5ex}\\[0.5ex]
\cline{1-4}
posterior: & $p \mid \an, \bn$ & $\sim$ & $\be(\an,\, \bn)$ & \phantom{$\be(\nng, \ynr)$} \rule{0ex}{2.5ex}
%\quad ($\frac{\tau(\x)}{n} = \frac{s}{n}$)\rule{0ex}{2.5ex}
\end{tabular}
\end{block}}};}
\uncover<5->{%
\node {\parbox{\textwidth}{%
\begin{block}{Beta-Binomial Model}
\begin{tabular}{r|lcll}
data : & $s \mid p$ & $\sim$ & $\bin(n,p)$ \\ %[0.5ex]
conjugate prior: & $p \mid \az, \bz$ & $\sim$ & \cancel{$\be(\az,\, \bz)$} & $\be(\nzg, \yzr)$ \rule{0ex}{2.5ex} \\[0.5ex]
\cline{1-4}
posterior: & $p \mid \an, \bn$ & $\sim$ & \cancel{$\be(\an,\, \bn)$} & $\be(\nng, \ynr)$ \rule{0ex}{2.5ex}
%\quad ($\frac{\tau(\x)}{n} = \frac{s}{n}$)\rule{0ex}{2.5ex}
\end{tabular}
\end{block}}};}
\end{tikzpicture}
%where $s$ = number of successes in the $n$ observed trials\\[1ex] %}
\uncover<6->{%
Vary hyperparameters $(\nzg, \yzr)$ in a set $\PZc$ \play\ set of priors $\MZ$\\[1ex] }
\uncover<7->{%
Set of posteriors $\MN$ via $\PNc = \big\{(\nng,\ynr) \colon (\nzg,\yzr) \in \PZc \big\}$\\[1ex]
Bounds for inferences (point estimate, \ldots) by min/max over $\PZc$. }
\end{frame}
\begin{frame}{Reparametrisation of the Beta Distribution}
\uncover<1->{\play\ reparametrisation helps to understand the parameter update:\\} %effect of prior-data conflict:\\}
\begin{tikzpicture}
[pfeil/.style={-latex', line width=1mm, color=tuered, shorten <=1mm},
cyanrand/.style={rounded corners, text centered, draw=tuecyan!50, inner sep=1mm, line width=0.7mm},
redbrace/.style={draw=tuered, decoration=brace, decorate, line width=0.8mm},
redbox/.style={text centered, draw=tuered, inner sep=1.5mm, line width=1mm, minimum width=0.75\textwidth}]
\uncover<1->{%
\node at (0,0.2) {\parbox[c]{\textwidth}{%
\begin{align*}
\nzg &= \az + \bz\,,
&
\yzr &= \frac{\az}{\az + \bz}\,, \quad \text{which are updated as}\\%[1.5ex]
%\\
%\end{align*}
%\intertext{%
%such that
%$\lambda \sim \ig(\nz+1,\nz\yz)$ and $\lambda\mid\mbf{t} \sim \ig(\nell+1,\nell\yell)$,
%where}%
%\begin{align*}
\nng &= \nzg + n\,,
&
\ynr &= \frac{\nzg}{\nzg + n} \, \yzr + \frac{n}{\nzg + n} \cdot \frac{s}{n}
\end{align*}
}};}
\uncover<2->{%
\node[cyanrand] (yz) at (-0.9,-1.9) {$\yzr = \E[p]$};
\draw [pfeil] (yz.north east) to [out= 30,in=260] ( 0.9,-0.65);
\draw [pfeil] (yz.north west) to [out=130,in=240] (-1.7,0.4);}
\uncover<3->{%
\node[cyanrand] (yn) at ( 1.4,-1.9) {$\ynr = \E[p \mid s]$};
\draw [pfeil] (yn.north) to [out=130,in=280] (-1.4,-0.65);}
\uncover<4->{%
\node[cyanrand] (ml) at ( 4.3,-1.9) {ML estimator $\hat{p}$};
\draw [pfeil] (ml.north) to [out=100,in=330] (3.6,-0.65);}
\uncover<5->{%
\node[cyanrand] (nz) at (-4 ,-1.9) {$\nzg =$ pseudocounts};
\draw [pfeil] (nz.north) to [out=90,in=270] (-4.0,-0.65);
\draw [pfeil] (nz.north west) to [out=95,in=240] (-5.2, 0.5);}
\uncover<6->{%
\node[redbox] at (0,-2.8) {$\E[p \mid s] = \ynr$ is a weighted average of $\E[p]$ and $\hat{p}$!};}
\uncover<7->{%
\node[redbox] at (0,-4.0) {$\V[p \mid s] = \dfrac{\ynr (1-\ynr)}{\nng + 1}$ decreases with $n$!};}
\end{tikzpicture}
\end{frame}
\begin{frame}{Beta-Binomial Model (BBM)}
\hspace*{-12ex}
\begin{columns}%[T]
\begin{column}{0.55\textwidth}
\begin{tikzpicture}
\pgftransformscale{0.025}
\uncover<1>{
\input{tikzdevice/noninfsg1.tex}
}
\uncover<2>{
\input{tikzdevice/noninfsg2.tex}
\draw[-stealth,very thick] (115,142) -- (225,172) node [above,midway, sloped] {12 out of 16};
}
\uncover<3->{
\input{tikzdevice/noninfln1.tex}
\draw[-stealth,very thick, gray] (115,142) -- (225,172) node [above,midway,sloped,gray] {12 out of 16};
}
\uncover<4->{
\input{tikzdevice/noninfln2.tex}
\draw[-stealth,very thick] (115,142) -- (225,172) node [above,midway, sloped] {12 out of 16};
}
\end{tikzpicture}
\end{column}
\begin{column}{0.45\textwidth}
\uncover<1->{%
\begin{block}{single prior (uniform)}
prior $\nzg = 2$, $\yzr = 0.5$\\
data $s/n = 12/16 = 0.75$
\end{block}
} %
\uncover<2->{%
\vspace*{-1.5ex}\centerline{\color{tueblue} $\blacktriangledown$}\vspace*{-1.5ex}
\begin{block}{}
$\nng = 18$, $\ynr = 0.72$
\end{block}
} %
%\uncover<0>{%
%\vspace*{-1.5ex}\centerline{\color{tueblue} $\blacktriangle$}\vspace*{-1.5ex}
%}
\uncover<3->{%
\begin{block}{near-vacuous set of priors}
prior $\nzg = 2$, $\yzr \in (0,1)$\\
data $s/n = 12/16 = 0.75$
\end{block}
} %
\uncover<4->{%
\vspace*{-1.5ex}\centerline{\color{tueblue} $\blacktriangledown$}\vspace*{-1.5ex}
\begin{block}{}
$\nng = 18$, $\ynr \in (0.67, 0.77)$
\end{block}
} %
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Prior-Data Conflict}
\uncover<1->{What if expert information and data tell different stories?\\[1ex]}
\uncover<2->{%
\begin{block}{Prior-Data Conflict}
\begin{itemize}
\item \emph{informative prior beliefs} and \emph{trusted data}\\ %\rule{0ex}{3ex}\\
(sampling model correct, no outliers, etc.) are in conflict%\\%[2ex]
\item ``[\ldots] the prior [places] its mass primarily on distributions
in the sampling model for which the observed data is surprising''\\
\parencite{2006:evans}
\item there are not enough data to overrule the prior
\end{itemize}
\end{block}}
%\uncover<3->{}
%\uncover<4->{\play\ reparametrization helps to understand effect of prior-data conflict:\\}
\end{frame}
\begin{frame}{Beta-Binomial Model (BBM)}
\hspace*{-12ex}
\begin{columns}%[T]
\begin{column}{0.55\textwidth}
\begin{tikzpicture}
\pgftransformscale{0.025}
\uncover<1>{
\input{tikzdevice/precise01.tex}
}
\uncover<2>{
\input{tikzdevice/precise02.tex}
\draw[-stealth,very thick] (110,175) -- (220,175) node [above,midway] {12 out of 16};
}
\uncover<3->{
\input{tikzdevice/precise03.tex}
\draw[-stealth,very thick,gray] (110,175) -- (220,175) node [above,midway,gray] {12 out of 16};
}
\uncover<4->{
\draw[-stealth,very thick] (110,102) -- (220,167) node [above,midway,sloped] {16 out of 16};
}
\end{tikzpicture}
\end{column}
\begin{column}{0.45\textwidth}
\uncover<1->{%
\begin{block}{no conflict:}
prior $\nzg = 8$, $\yzr = 0.75$\\
data $s/n = 12/16 = 0.75$
\end{block}
} %
\uncover<2->{%
\vspace*{-1.5ex}\centerline{\color{tueblue} $\blacktriangledown$}\vspace*{-1.5ex}
\begin{block}{}
$\nng = 24$, $\ynr = 0.75$
\end{block}
} %
\uncover<4->{%
\vspace*{-1.5ex}\centerline{\color{tueblue} $\blacktriangle$}\vspace*{-1.5ex}
}
\uncover<3->{%
\begin{block}{prior-data conflict:}
prior $\nzg = 8$, $\yzr = 0.25$\\
data $s/n = 16/16 = 1$
\end{block}
} %
\uncover<0>{%
\vspace*{-1.5ex}\centerline{\color{tueblue} $\blacktriangledown$}\vspace*{-1.5ex}
\begin{block}{}
$\nng \in [20, 24]$, $\ynr \in [0.73, 0.86]$
\end{block}
} %
%\uncover<5->{ %
%\then\ same predictive prob.\ P!
%}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Imprecise BBM} %with $\nz$ fixed}
%IDM (Walley 1996)\\ Quaghebeur \& de Cooman (2005)
IDM \parencite{1996:walley::idm}; \textcite{2005:quaeghebeurcooman}
\hspace*{-12ex}
\begin{columns}%[T]
\begin{column}{0.55\textwidth}
\begin{tikzpicture}
\pgftransformscale{0.025}
\uncover<1>{