-
Notifications
You must be signed in to change notification settings - Fork 2
/
setsofpriorspart.tex
411 lines (311 loc) · 13.7 KB
/
setsofpriorspart.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
\documentclass[authoryear]{elsarticle}
% ------------ packages -------------
\usepackage[utf8]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage{graphicx}
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{bm}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{booktabs}
\usepackage{tikz}
\usepackage{url}
\usepackage[bookmarks]{hyperref}
%\usetikzlibrary{shapes.misc,fit}
\usetikzlibrary{%
arrows,%
calc,%
fit,%
patterns,%
plotmarks,%
shapes.geometric,%
shapes.misc,%
shapes.symbols,%
shapes.arrows,%
shapes.callouts,%
shapes.multipart,%
shapes.gates.logic.US,%
shapes.gates.logic.IEC,%
er,%
automata,%
backgrounds,%
chains,%
topaths,%
trees,%
petri,%
mindmap,%
matrix,%
calendar,%
folding,%
fadings,%
through,%
patterns,%
positioning,%
scopes,%
decorations.fractals,%
decorations.shapes,%
decorations.text,%
decorations.pathmorphing,%
decorations.pathreplacing,%
decorations.footprints,%
decorations.markings,%
shadows}
%\usepackage{hyperref}
%\usepackage[bookmarks]{hyperref}
%\usepackage[colorlinks=true,citecolor=red,linkcolor=black]{hyperref}
% ------------ custom defs -------------
\newcommand{\reals}{\mathbb{R}}
\newcommand{\posreals}{\reals_{>0}}
\newcommand{\posrealszero}{\reals_{\ge 0}}
\newcommand{\naturals}{\mathbb{N}}
\newcommand{\dd}{\,\mathrm{d}}
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\bs}[1]{\boldsymbol{#1}}
\renewcommand{\vec}[1]{{\bm#1}}
\newcommand{\uz}{^{(0)}} % upper zero
\newcommand{\un}{^{(n)}} % upper n
\newcommand{\ui}{^{(i)}} % upper i
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\Tsys}{T_\text{sys}}
\newcommand{\Rsys}{R_\text{sys}}
\newcommand{\lRsys}{\ul{R}_\text{sys}}
\newcommand{\uRsys}{\ol{R}_\text{sys}}
\newcommand{\fsys}{f_\text{sys}}
\newcommand{\Fsys}{F_\text{sys}}
\newcommand{\lFsys}{\ul{F}_\text{sys}}
\newcommand{\uFsys}{\ol{F}_\text{sys}}
\newcommand{\lgt}{\ul{g}}
\newcommand{\ugt}{\ol{g}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{Var}}
\newcommand{\wei}{\operatorname{Wei}} % Weibull Distribution
\newcommand{\ig}{\operatorname{IG}} % Inverse Gamma Distribution
\newcommand{\El}{\ul{\operatorname{E}}}
\newcommand{\Eu}{\ol{\operatorname{E}}}
\def\yz{y\uz}
\def\yn{y\un}
%\def\yi{y\ui}
\newcommand{\yfun}[1]{y^{({#1})}}
\newcommand{\yfunl}[1]{\ul{y}^{({#1})}}
\newcommand{\yfunu}[1]{\ol{y}^{({#1})}}
\def\ykz{y\uz_k}
\def\ykn{y\un_k}
\def\yzl{\ul{y}\uz}
\def\yzu{\ol{y}\uz}
\def\ynl{\ul{y}\un}
\def\ynu{\ol{y}\un}
\def\yil{\ul{y}\ui}
\def\yiu{\ol{y}\ui}
\def\ykzl{\ul{y}\uz_k}
\def\ykzu{\ol{y}\uz_k}
\def\yknl{\ul{y}\un_k}
\def\yknu{\ol{y}\un_k}
\newcommand{\ykzfun}[1]{y\uz_{#1}}
\newcommand{\ykzlfun}[1]{\ul{y}\uz_{#1}}
\newcommand{\ykzufun}[1]{\ol{y}\uz_{#1}}
\def\nz{n\uz}
\def\nn{n\un}
%\def\ni{n\ui}
\newcommand{\nfun}[1]{n^{({#1})}}
\newcommand{\nfunl}[1]{\ul{n}^{({#1})}}
\newcommand{\nfunu}[1]{\ol{n}^{({#1})}}
\def\nkz{n\uz_k}
\def\nkn{n\un_k}
\newcommand{\nkzfun}[1]{n\uz_{#1}}
\newcommand{\nkzlfun}[1]{\ul{n}\uz_{#1}}
\newcommand{\nkzufun}[1]{\ol{n}\uz_{#1}}
\def\nzl{\ul{n}\uz}
\def\nzu{\ol{n}\uz}
\def\nnl{\ul{n}\un}
\def\nnu{\ol{n}\un}
\def\nil{\ul{n}\ui}
\def\niu{\ol{n}\ui}
\def\nkzl{\ul{n}\uz_k}
\def\nkzu{\ol{n}\uz_k}
\def\nknl{\ul{n}\un_k}
\def\nknu{\ol{n}\un_k}
\def\taut{\tau(\vec{t})}
\def\ttau{\tilde{\tau}}
\def\ttaut{\ttau(\vec{t})}
\def\MZ{\mathcal{M}\uz}
\def\MN{\mathcal{M}\un}
\def\MkZ{\mathcal{M}\uz_k}
\def\MkN{\mathcal{M}\un_k}
\def\PkZ{\Pi\uz_k}
\def\PkN{\Pi\un_k}
\newcommand{\PZi}[1]{\Pi\uz_{#1}}
\def\tnow{t_\text{now}}
\def\tpnow{t^+_\text{now}}
% ------------ options -------------
\allowdisplaybreaks
\journal{***}
\begin{document}
% ------------ frontmatter -------------
\begin{frontmatter}
\title{Condition-Based Maintenance for Systems based on Bayesian P-Box Component Models***}
\author[tue]{Gero Walter}
\ead{[email protected]}
\author[tue]{Simme Douwe Flapper}
\ead{[email protected]}
\address[tue]{School of Industrial Engineering, Eindhoven University of Technology, Eindhoven, Netherlands}
\begin{abstract}
CBM when no (continuous) degradation signal for system available, but status of components observable (works yes/no)
use method from asce-asme paper:
gives RUL in form of a p-box (set of distributions), base maintenance decision directly on that
(via upper expected cost rate)
Bayesian approach allows
component models to include expert info, test data (if available), and status of components in the running system
main message: can do CBM for systems without degradation signal,
especially useful for redundant systems,
method reflects aleatory and epistemic uncertainty in all information sources
\end{abstract}
\begin{keyword}
condition-based maintenance \sep system reliability \sep remaining useful life \sep survival signature \sep imprecise probability \sep p-box
\end{keyword}
\end{frontmatter}
% ------------ manuscript -------------
\section{Introduction}
\label{intro}
main message:
can do CBM for systems without degradation signal,
especially useful for redundant systems,
method reflects aleatory and epistemic uncertainty in all information sources
use method from asce-asme paper:
gives RUL in form of a p-box (set of distributions), base maintenance decision directly on that
(via upper expected cost rate?)
Furthermore, our method appropriately reflects epistemic uncertainty,
by using sets of conjugate priors \citep{diss} for the component models.
The resulting sets of component posteriors are equivalent to parametric p-boxes,
an imprecise probability model popular in risk and reliability engineering.
***figure of process: set of component priors $\to$ set of component posteriors $\to$ system RUL $\to$ $g(\tau)$ $\to$ $\tau^*$
***single $\tau^*$ vs set of $\tau^*$: decision support
***discuss \cite{2015:sankararaman}, epistemic vs. aleatoric uncertainty: big topic in reliability and risk
***refer to Terje Aven, NASA Langley UQ challenge, illustration that uniform distribution does not express ignorance (Edoardo Patelli)***
***we go beyond what \cite{2015:sankararaman} recommends
The proposed system RUL model adequately reflects uncertainty in the RUL distribution
according to the current system status,
in particular making more cautious predictions when failure behaviour in the monitored system
seems to deviate from what is expected from expert knowledge and previous (test) data.
Expert input in our model is, for each component type,
Weibull shape parameter, range of expected failure time (translated to scale parameter),
and range of expert info weight (how sure about mean failure time guess).
Component test data (can include right-censored observations) is optional.
By using ranges we do a systematic sensitivity analysis.
Our model gives lower and upper bounds for the distribution of time till system failure,
taking current (at time $\tnow$) system condition into account.
An advantage of our approach is that
it indicates, for any current time $\tnow$, at which point in the future it is economical to repair the system,
thus allowing for set-up time for maintenance work.
***all expressed in time, but could also be in usage (number of cycles, etc).
\section{***summary of ASCE-ASME paper method}
sets of priors on component survival,
survival signature,
test data inclusion
(write down explicit formula for test data including censored observations),
noninformatiove censoring,
set of system reliability curves as output,
wider set in case of prior-data conflict
\section{***extensions to ASCE-ASME paper method}
\label{sec:extensions}
output is a set of current system reliability curves
taking into account the current system state,
including the current ages of system components,
and the lifetime histories of all component types,
including test data and expert assessments.
The set of current, updated system reliability curves gives a RUL estimate
in the form of a p-box, thus reflecting both aleatoric and epistemic uncertainty in the estimate.
\section{***from (set of) reliability curves to maintenance decision}
To find the optimal moment for maintenance based on the current set of system reliability curves,
we minimize the expected average cost per time unit,
or unit cost rate, $g(\tau)$ %, where $\tau$ is the moment when preventive maintenance is exectued.
(could be discounted as well, out of scope here.)
In the literature, commonly two ways to calculate the unit cost rate are considered,
a renewal reward theory based long-term unit cost rate $g_r(\tau)$,
and the one-cycle cost rate $g_1(\tau)$ \citep{1996:mazzuchi-soyer}.
We will discuss both approaches here with their advantages and disadvanatges.
Let $c_p$ be the cost of planned / preventive maintenance, and $c_u$ the cost of unplanned / breakdown maintenance, where $c_p < c_u$.
\subsection{***unit cost rate via renewal reward}
The renewal reward theory based approach considers the unit cost rate as a long-term average,
where the proposed policy is used over a large number of replacement cycles,
and cycles can be seen as stochastic copies of each other.
Under this assumption, the unit cost rate is, according to renewal theory,
given as the expected cycle cost $ECC(\tau)$ divided by the expected cycle length $ECL(\tau)$:
\begin{align}
g_r(\tau) &= \frac{ECC(\tau)}{ECL(\tau)} = \frac{c_p \Rsys(\tau) + c_u \big(1-\Rsys(\tau)\big)}{\tau \Rsys(\tau) + \int_0^\tau \Rsys(t) \dd t}\,,
\end{align}
and $\tau_r^* = \arg\min g_r(\tau) - \tnow$ is the cost-optimal repair time from now
(since $\Rsys(\cdot)$ is always in terms of time since system startup)
***most often used in literature \citep{2013:si-et-al}, \citep{2011:kim-et-al}
***stochastic copies assumption implies that the system is in the same state at the start of each cycle,
so $c_p$ needs to include the costs of replacing all components
to bring the system into the same state as at startup time.
\subsection{***one-cycle unit cost rate}
The one-cycle unit cost rate approach considers only the costs with respect to the current cycle.
Conditional on the (random) system failure time $\Tsys$, the unit cost rate is
\begin{align*}
g_1(\tau \mid \Tsys) &=
\begin{cases}
c_p / \tau & \text{if } \Tsys \ge \tau \\
c_u / \Tsys & \text{if } \Tsys < \tau
\end{cases}
\end{align*}
Taking the expectation over $\Tsys$ leads to the unit cost rate being
\begin{align*}
g_1(\tau) &= \E[g_1(\tau \mid \Tsys)] = \frac{c_p}{\tau} \Rsys(\tau) + c_u \int_0^\tau \frac{1}{t} \fsys(t) \dd t
\end{align*}
***here, $\Rsys(\cdot)$ shifted such that $\tnow = 0$.
Due to our extensions from Section~\ref{sec:extensions},
maintenance work can consist of replacing (or returning to an as-good-as-new state) some or all failed or non-failed components,
as arbitrary component ages can be taken into account.
(However, computation times decrease when all components of the same type are replaced at the same time,
as then the duplication of component types for the survival signature decomposition is not necessary.)
\subsection{***bounds for unit cost rate}
Bounds for $\Rsys(t)$ lead to bounds for $g(\tau)$.
%For each $\tau$, fix $\Rsys(\tau) \in [\lRsys(\tau), \uRsys(\tau)]$ and optimize $I(\tau) = \int_0^\tau \Rsys(t) \dd t$
%nonparametrically: $\ol{I}(\tau)$ by $\uRsys(t)$, $\ul{I}(\tau)$ by $\lRsys(t)$ until level of $\Rsys(\tau)$.
Can get bounds $\lgt(\tau)$ and $\ugt(\tau)$ in the same way as bounds $\lRsys(t)$ and $\uRsys(t)$ in ASCE-ASME paper:
need to optimize only over
$\nkzfun{1} \in \left[\nkzlfun{1}, \nkzufun{1}\right], \ldots, \nkzfun{K} \in \left[\nkzlfun{K}, \nkzufun{K}\right]$.
This works because, like $\Rsys(t)$, also $g(\tau)$ is monotone in $\ykzfun{1}, \ldots \ykzfun{K}$:
$\Rsys(\tau)$ is monotone in $\ykzfun{1}, \ldots \ykzfun{K}$ (ASCE-ASME paper),
and $g(\tau)$ is monotonely decreasing in $\Rsys(\tau)$:
First look at $I(\tau) := \int_0^\tau \Rsys(t) \dd t$.
A lower bound for $I(\tau)$ is $\tau \Rsys(\tau)$ (obtained when $\Rsys(t)$ drops to $\Rsys(\tau)$ immediately after $t=0$),
and an upper bound for $I(\tau)$ is $\tau$ (obtained when $\Rsys(t)$ remains at $1$ until immediately prior to $t = \tau$).
Therefore, for each $\tau$ and $\Rsys(\tau)$ there exists a constant $R^* \in [\Rsys(\tau), 1]$
such that $I(\tau) = \tau R^*$.
Note that $R^*$ increases when $\Rsys(\tau)$ increases.
Setting $\Rsys(\tau) =: R$ and $g(\tau) =: g$ to simplify notation, we get
\begin{align*}
g &= \frac{c_p R + c_u (1-R)}{\tau R + \tau R^*}
= \frac{(c_p - c_u) R + c_u}{\tau R + \tau R^*}\,.
\end{align*}
As $(c_p -c_u) < 0$, the enumerator of $g$ is monotonely decreasing in $R$.
The denominator of $g$ is monotonely increasing in $R$, since $R^*$ must increase when $R$ increases.
In total, $g$ is thus monotonely decreasing in $R$.
***formulate above as theorem?
\subsection{***from bounds for $g(\tau)$ to (set of) $\tau^*$:}
%worst case, best case, interval (how?)
\begin{itemize}
\item worst case (minimax strategy): minimizing $\ugt(\tau)$ leads to $\tau^*_u$.
\item interval dominance: for each $\tau$, we get a $g(\tau)$ interval $[\lgt(\tau), \ugt(\tau)]$.
Throw out all $\tau$'s for which $\lgt(\tau) \ge \ugt(\tau^*_u)$.
This will leave us with the set of $\tau$'s that are not dominated by $\tau^*_u$.
(The set will be quite wide probably.)
\item parametric / maximality (?): collect all $\tau$'s for which there is a prior parameter combination such that $\tau$ minimizes $g(\tau)$.
(Need to do grid search over $\nkz$'s, or keep optimal pars when calculating $\lgt(\tau)$.)
\end{itemize}
\subsection{***simple 95\% policy}
Or, alternatively to all the above, simple 95\% policy?
Repair time from now such that lower system reliability is at least 95\%, i.e., upper system failure probability is at most 5\%.
\section*{Acknowledgements}
CAMPI
Frank Coolen for inspiring discussions
\section*{Bibliography}
\bibliographystyle{elsarticle-harv}
\bibliography{refs}
\end{document}