-
Notifications
You must be signed in to change notification settings - Fork 2
/
fastrcnn.py
32 lines (24 loc) · 1.37 KB
/
fastrcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torchvision
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator
from backbone import get_backbone
def get_model(args, backbone=None, num_classes=100):
if backbone is None:
print("!!!! Using pretrained mobilenet_v2 backbone instead of SimCLR, default weights !!!!")
backbone = torchvision.models.mobilenet_v2(weights="DEFAULT").features
backbone.out_channels = 1280
else:
backbone = get_backbone(args, train=args.train_backbone)
#out_channels already set
anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
anchor_generator = AnchorGenerator(sizes=anchor_sizes,
aspect_ratios=((0.5, 1.0, 2.0),) * len(anchor_sizes)) # (1:2, 1:1, 2:1); 3 AR + 3 scales scales shown to work best in Faster RCNN paper wrt mAP; probably keep samem
roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0','1','2','3'],
output_size=7,
sampling_ratio=2)
# put the pieces together inside a FasterRCNN model
model = FasterRCNN(backbone=backbone,
num_classes=num_classes,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler)
return model