-
Notifications
You must be signed in to change notification settings - Fork 480
/
track_anything.py
96 lines (74 loc) · 3.88 KB
/
track_anything.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import PIL
from tqdm import tqdm
from tools.interact_tools import SamControler
from tracker.base_tracker import BaseTracker
from inpainter.base_inpainter import BaseInpainter
import numpy as np
import argparse
class TrackingAnything():
def __init__(self, sam_checkpoint, xmem_checkpoint, e2fgvi_checkpoint, args):
self.args = args
self.sam_checkpoint = sam_checkpoint
self.xmem_checkpoint = xmem_checkpoint
self.e2fgvi_checkpoint = e2fgvi_checkpoint
self.samcontroler = SamControler(self.sam_checkpoint, args.sam_model_type, args.device)
self.xmem = BaseTracker(self.xmem_checkpoint, device=args.device)
self.baseinpainter = BaseInpainter(self.e2fgvi_checkpoint, args.device)
# def inference_step(self, first_flag: bool, interact_flag: bool, image: np.ndarray,
# same_image_flag: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
# if first_flag:
# mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
# return mask, logit, painted_image
# if interact_flag:
# mask, logit, painted_image = self.samcontroler.interact_loop(image, same_image_flag, points, labels, logits, multimask)
# return mask, logit, painted_image
# mask, logit, painted_image = self.xmem.track(image, logit)
# return mask, logit, painted_image
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
return mask, logit, painted_image
# def interact(self, image: np.ndarray, same_image_flag: bool, points:np.ndarray, labels: np.ndarray, logits: np.ndarray=None, multimask=True):
# mask, logit, painted_image = self.samcontroler.interact_loop(image, same_image_flag, points, labels, logits, multimask)
# return mask, logit, painted_image
def generator(self, images: list, template_mask:np.ndarray):
masks = []
logits = []
painted_images = []
for i in tqdm(range(len(images)), desc="Tracking image"):
if i ==0:
mask, logit, painted_image = self.xmem.track(images[i], template_mask)
masks.append(mask)
logits.append(logit)
painted_images.append(painted_image)
else:
mask, logit, painted_image = self.xmem.track(images[i])
masks.append(mask)
logits.append(logit)
painted_images.append(painted_image)
return masks, logits, painted_images
def parse_augment():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default="cuda:0")
parser.add_argument('--sam_model_type', type=str, default="vit_h")
parser.add_argument('--port', type=int, default=6080, help="only useful when running gradio applications")
parser.add_argument('--debug', action="store_true")
parser.add_argument('--mask_save', default=False)
args = parser.parse_args()
if args.debug:
print(args)
return args
if __name__ == "__main__":
masks = None
logits = None
painted_images = None
images = []
image = np.array(PIL.Image.open('/hhd3/gaoshang/truck.jpg'))
args = parse_augment()
# images.append(np.ones((20,20,3)).astype('uint8'))
# images.append(np.ones((20,20,3)).astype('uint8'))
images.append(image)
images.append(image)
mask = np.zeros_like(image)[:,:,0]
mask[0,0]= 1
trackany = TrackingAnything('/ssd1/gaomingqi/checkpoints/sam_vit_h_4b8939.pth','/ssd1/gaomingqi/checkpoints/XMem-s012.pth', args)
masks, logits ,painted_images= trackany.generator(images, mask)