-
Notifications
You must be signed in to change notification settings - Fork 31
/
SPEI viewer.js
292 lines (256 loc) · 12.4 KB
/
SPEI viewer.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
////////////////////////////////////////////////////////////////////////////
// SPEI viewer //
// This script computes the differences of the annual average SPEI. //
// Positive SPEI values are masked as it focuses on the drought period. //
// The difference maps show the annual difference of drought. Each layer //
// represents the difference between the annual average SPEI in that year //
// and the previous years. //
//------------------------------------------------------------------------//
// Optionally, one may export the annual difference maps to Goole drive. //
// You can also define a point/region of interest by uploading a shapefile//
// or draw it by hand in GEE. The monthly evolution of SPEI will be displ //
// -ayed. Just like SPEI vs NDVI time series analysis //
////////////////////////////////////////////////////////////////////////////
//-------------------------------Preparation------------------------------//
// study time range
var year_start = 2001; // MODIS NDVI 2000-02-18T00:00:00 - Present
var year_end = 2018;
var month_start = 1;
var month_end = 12;
var date_start = ee.Date.fromYMD(year_start, 1, 1);
var date_end = ee.Date.fromYMD(year_end, 12, 31);
var years = ee.List.sequence(year_start, year_end);// time range of years
// define your study area and name it as roi. e.g. draw it by hand tool
var geometry = /* color: #d63000 */ee.Geometry.MultiPoint(
[[-120.04598637852064, 36.447665173620244],//California
[-99.39168950352064, 32.980880455676854], //Texas
[-41.521726852388724, -10.87755592386568],//Brazil
[21.87462563721556, -23.646207259859224], //Southern Africa
[120.66368813721556, -31.729729863475043],//Australia1
[125.05821938721556, -25.5639224731522], //Australia2
[148.08556313721556, -25.5639224731522], //Australia3
[-7.587965499171105, 38.51236079666947], //Portugal
[-4.072340499171105, 37.89075584438553], //Spain
[15.087815750828895, 57.84360752733928], //Sweden
[24.931565750828895, 61.22692304603273], //Finland
[77.1762313117191, 16.351044772181], //India
[116.1996688117191, 37.90027047802768]]); //Northern China
var roiPoints = geometry.buffer(9000);
//-------------------------------------------------------------------------//
// LUCC: This part will import and display the lucc info //
//-------------------------------------------------------------------------//
var worldmap = ee.FeatureCollection('ft:1tdSwUL7MVpOauSgRzqVTOwdfy17KDbw-1d9omPw');//world vector
var roiWorld = worldmap.geometry();
var lucc = ee.Image('ESA/GLOBCOVER_L4_200901_200912_V2_3').select('landcover');
// var lucc = ee.Image('USGS/NLCD/NLCD2011').select('landcover').clip(roi);
Map.addLayer(lucc, {}, 'Landcover');
var lucc_pixelArea = ee.Image.pixelArea().addBands(lucc);
var lucc_group = lucc_pixelArea.reduceRegion({
reducer: ee.Reducer.sum().group({
groupField: 1,
groupName: 'landcover_class_value'
}),
geometry: roiWorld,
scale: 300,// meters
bestEffort: true,
});
// print('reduction_results', lucc_group);
var lucc_names = ee.Dictionary.fromLists(
ee.List(lucc.get('landcover_class_values')).map(ee.String),
lucc.get('landcover_class_names')
);
print('lucc_names',lucc_names);
var lucc_palette = ee.Dictionary.fromLists(
ee.List(lucc.get('landcover_class_values')).map(ee.String),
lucc.get('landcover_class_palette')
);
// Chart functions
function createFeature(roi_class_stats) {
roi_class_stats = ee.Dictionary(roi_class_stats);
var class_number = roi_class_stats.get('landcover_class_value');
var result = {
lucc_class_number: class_number,
lucc_class_name: lucc_names.get(class_number),
lucc_class_palette: lucc_palette.get(class_number),
area_m2: roi_class_stats.get('sum')
};
return ee.Feature(null, result);
}
function createPieChartSliceDictionary(perc) {
return ee.List(perc.aggregate_array("lucc_class_palette"))
.map(function(p) { return {'color': p}; }).getInfo();
}
// pie chart of lucc summary
var roi_stats = ee.List(lucc_group.get('groups'));
var lucc_Pie = ee.FeatureCollection(roi_stats.map(createFeature));
var lucc_Piechart = ui.Chart.feature.byFeature({
features: lucc_Pie,
xProperty: 'lucc_class_name',
yProperties: ['area_m2', 'lucc_class_number']
})
.setChartType('PieChart')
.setOptions({
title: 'Land Cover Summary Chart',
slices: createPieChartSliceDictionary(lucc_Pie),
sliceVisibilityThreshold: 0
});
print('LUCC percentage', lucc_Piechart);
// var months = ee.List.sequence(month_start, month_end);// time range of months
// change the month lag here, e.g. no lag is 0,-1 is one month lag,-2 is 2 month lag
var lagflag = 0;
var spei1m = ee.ImageCollection("users/fsn1995/spei1m_noah");
var spei2m = ee.ImageCollection("users/fsn1995/spei2m_noah");
var spei3m = ee.ImageCollection("users/fsn1995/spei3m_noah");
var spei4m = ee.ImageCollection("users/fsn1995/spei4m_noah");
var spei5m = ee.ImageCollection("users/fsn1995/spei5m_noah");
var spei6m = ee.ImageCollection("users/fsn1995/spei6m_noah");
var spei7m = ee.ImageCollection("users/fsn1995/spei7m_noah");
var spei8m = ee.ImageCollection("users/fsn1995/spei8m_noah");
var spei9m = ee.ImageCollection("users/fsn1995/spei9m_noah");
var spei10m = ee.ImageCollection("users/fsn1995/spei10m_noah");
var spei11m = ee.ImageCollection("users/fsn1995/spei11m_noah");
var spei12m = ee.ImageCollection("users/fsn1995/spei12m_noah");
// select the time scale of spei here
var spei = spei11m.filterDate(date_start, date_end)
.map(function(image) {
var speiMask = image.lte(0);
return image.updateMask(speiMask);
}); // mask spei > 0
var ndvi = ee.ImageCollection('MODIS/006/MOD13A2')
.filterDate(date_start, date_end)
.select('NDVI');
//-------------------------Trend identification---------------------------//
// kendall's test, P-value disabled by GEE
// var speiTrend = spei.reduce(ee.Reducer.kendallsCorrelation());
// var speiTrendTau = {min: -1, max: 1, palette: ['red','white', 'green']};
// // var speiTrendP = {min: 0, max: 1, palette: ['red','white', 'green']};
// Map.addLayer(speiTrend.select('b1_tau'), speiTrendTau, 'speiTrendTau');
// // Map.addLayer(speiTrend.select('b1_p-value'), speiTrendP, 'speiTrendP');
// var ndviTrend = ndvi.reduce(ee.Reducer.kendallsCorrelation());
// Map.addLayer(ndviTrend.select('NDVI_tau'), speiTrendTau, 'ndviTrendTau');
// // Map.addLayer(ndviTrend.select('NDVI_p-value'), speiTrendP, 'speiTrendP');
// ee.ImageCollection.formaTrend
// var speiTrendTau = {min: -1, max: 1, palette: ['red','white', 'green']};
// var speiTrend = spei.formaTrend();
// Map.addLayer(speiTrend.select('long-trend'), speiTrendTau, 'speiTrend');
// Map.addLayer(speiTrend.select('long-tstat'), speiTrendTau, 'speiTstat');
// var ndviTrend = ndvi.formaTrend();
// Map.addLayer(ndviTrend.select('long-trend'), speiTrendTau, 'ndviTrend');
// Map.addLayer(ndviTrend.select('long-tstat'), speiTrendTau, 'ndviTstat');
// linear trend
var speiLinear = spei.map(function(image) {
return image.addBands(image.metadata('system:time_start').divide(1e18));
// Scale milliseconds by a large constant to avoid very small slopes
// in the linear regression output. code from GEE guides
});
var speiLinear = speiLinear.select(['system:time_start', 'b1']).reduce(
ee.Reducer.linearFit());
Export.image.toDrive({
image: speiLinear.select('scale'),
folder: 'speiDiff',
description: 'speiLinearScale',
scale: 10000,
// region: roi // If not specified, the region defaults to the viewport at the time of invocation
});
Export.image.toDrive({
image: speiLinear.select('offset'),
folder: 'speiDiff',
description: 'speiLinearOffset',
scale: 10000,
// region: roi // If not specified, the region defaults to the viewport at the time of invocation
});
Map.addLayer(speiLinear,
{min: 0, max: [-0.9, 8e-5, 1], bands: ['scale', 'offset', 'scale']}, 'fit');
// annual spei
var speiYear = ee.ImageCollection.fromImages(
years.map(function (y) {
var indice = spei.select('b1')
.filter(ee.Filter.calendarRange(y, y, 'year'))
.mean()
.rename('speiy');
return indice.set('year', y)
.set('system:time_start', ee.Date.fromYMD(y, 1, 1));
}).flatten()
);
var speiYear1 = ee.ImageCollection.fromImages(
years.map(function (y) {
var indice = spei.select('b1')
.filter(ee.Filter.calendarRange(y, y, 'year'))
.mean()
.rename('speiy1');
return indice.set('year', y)
.set('system:time_start', ee.Date.fromYMD(y, 1, 1));
}).flatten()
);
var addLag1y = function(image) {
var lagy = ee.Date(image.get('system:time_start')).advance(-1,'year');
return image.set({'lagy': lagy});
};
var addLag0y = function(image) {
var lagy = ee.Date(image.get('system:time_start')).advance(0,'year');
return image.set({'lagy': lagy});
};
var spei0 = speiYear.select('speiy').map(addLag0y);
var spei1 = speiYear1.select('speiy1').map(addLag1y);
// print(spei0);
// print(spei1);
var lagFilter = ee.Filter.equals({
leftField: 'lagy',
rightField: 'lagy',
});
var lagLink = ee.Join.saveFirst({
matchKey: 'match',
});
var speiAll = ee.ImageCollection(lagLink.apply(spei0.select('speiy'),
spei1.select('speiy1'),lagFilter))
.map(function(image) {
return image.addBands(image.get('match'));
});
// Map.addLayer(speiAll.select('speiy').filterDate('2017-01-01'));
print(speiAll);
// spei differences
var speiDiff = speiAll.map(function(image) {
return image.addBands(
image.expression('a1 - b1', {
a1: image.select('speiy1'),
b1: image.select('speiy')
}).rename('speiDiff'));
});
// var mapPara = {min: -1, max: 1, palette: ['red','white', 'green']};
// Map.addLayer(speiDiff, mapPara);
// // experiment with linear fit
// var spei = spei.map(function(image) {
// return image.addBands(image.metadata('system:time_start').divide(1e18));
// // Scale milliseconds by a large constant to avoid very small slopes
// // in the linear regression output. code from GEE guides
// });
var mapPara = {min: -1, max: 1, palette: ['red','white', 'green']};
// Map.addLayer(speiDiff.select('speiDiff').filterDate('2001-01-01'), mapPara, '2001');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2002-01-01'), mapPara, '2002');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2003-01-01'), mapPara, '2003');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2004-01-01'), mapPara, '2004');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2005-01-01'), mapPara, '2005');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2006-01-01'), mapPara, '2006');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2007-01-01'), mapPara, '2007');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2008-01-01'), mapPara, '2008');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2009-01-01'), mapPara, '2009');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2010-01-01'), mapPara, '2010');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2011-01-01'), mapPara, '2011');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2012-01-01'), mapPara, '2012');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2013-01-01'), mapPara, '2013');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2014-01-01'), mapPara, '2014');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2015-01-01'), mapPara, '2015');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2016-01-01'), mapPara, '2016');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2017-01-01'), mapPara, '2017');
Map.addLayer(speiDiff.select('speiDiff').filterDate('2018-01-01'), mapPara, '2018');
//------------------------------------------------------------------------//
// uncomment the following lines for optional experiment //
//------------------------------------------------------------------------//
// Export.image.toDrive({
// image: speiDiff.select('speiDiff'),
// folder: 'speiDiff',
// description: 'Differences of annual SPEI',
// scale: 10000,
// // region: roi // If not specified, the region defaults to the viewport at the time of invocation
// });
// print(ui.Chart.image.seriesByRegion(spei.select('b1'), roi, ee.Reducer.mean(), 'Montly SPEI', 1000));