forked from u1946589/Holomorphic-Embedding-Josep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
HELM_v0.py
315 lines (291 loc) · 14.2 KB
/
HELM_v0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#AUTHOR: Josep Fanals Batllori
#CONTACT: [email protected]
# --------------------------- LIBRARIES
import numpy as np
import pandas as pd
# --------------------------- END LIBRARIES
# --------------------------- INITIAL DATA: Y, SHUNTS AND Y0i
df_top = pd.read_excel('Dades_v1.xlsx', sheet_name='Topology') # dataframe of the topology
num_busos = 0 #number of buses initialized to 0
busos_coneguts = np.zeros(0, dtype=int) #vector to store the indices of the found buses
def trobar(element, vector): #function to check if an element is in a vector
if element in vector:
return True
else:
return False
for i in range(df_top.shape[0]): #go through all rows
for j in range(0, 2): #go through 1st and 2nd column to grab the bus' indices
if not trobar(df_top.iloc[i, j], busos_coneguts): #if the index is new
num_busos += 1
busos_coneguts = np.append(busos_coneguts, df_top.iloc[i, j])
n = num_busos
Yx = np.zeros((n, n), dtype=complex) #matrix with all series admittances, also slack bus
for i in range(df_top.shape[0]): #go through all rows
Yx[df_top.iloc[i, 0], df_top.iloc[i, 0]] = Yx[df_top.iloc[i, 0], df_top.iloc[i, 0]] + 1 / (
df_top.iloc[i, 2] + df_top.iloc[i, 3] * 1j) # diagonal element
Yx[df_top.iloc[i, 1], df_top.iloc[i, 1]] = Yx[df_top.iloc[i, 1], df_top.iloc[i, 1]] + 1 / (
df_top.iloc[i, 2] + df_top.iloc[i, 3] * 1j) # diagonal element
Yx[df_top.iloc[i, 0], df_top.iloc[i, 1]] = Yx[df_top.iloc[i, 0], df_top.iloc[i, 1]] - 1 / (
df_top.iloc[i, 2] + df_top.iloc[i, 3] * 1j) # off diagonal
Yx[df_top.iloc[i, 1], df_top.iloc[i, 0]] = Yx[df_top.iloc[i, 1], df_top.iloc[i, 0]] - 1 / (
df_top.iloc[i, 2] + df_top.iloc[i, 3] * 1j) # off diagonal
Y = np.zeros((n - 1, n - 1), dtype=complex) #admittance matrix withouth slack bus
for i in range(n - 1):
for j in range(n - 1):
Y[i, j] = Yx[i + 1, j + 1] #just ignoring the first row and column
vecx_shunts = np.zeros((n, 1), dtype=complex) #vector with shunt admittances
for i in range(df_top.shape[0]): # passar per totes les files
vecx_shunts[df_top.iloc[i, 0], 0] = vecx_shunts[df_top.iloc[i, 0], 0] + df_top.iloc[i, 4] * (-1) * 1j #B/2 is in column 4. The sign is changed here
vecx_shunts[df_top.iloc[i, 1], 0] = vecx_shunts[df_top.iloc[i, 1], 0] + df_top.iloc[i, 4] * (-1) * 1j #B/2 is in column 4. The sign is changed here
vec_shunts = np.zeros((n - 1, 1), dtype=complex) #same vector, just to adapt
for i in range(n - 1):
vec_shunts[i, 0] = vecx_shunts[i + 1, 0]
# vec_shunts = --vec_shunts #no need to change the sign, already done
vec_Y0 = np.zeros((n - 1, 1), dtype=complex) #vector with admittances connecting to the slack
for i in range(df_top.shape[0]): #go through all rows
if df_top.iloc[i, 0] == 0: #if slack in the first column
vec_Y0[df_top.iloc[i, 1] - 1, 0] = 1 / (
df_top.iloc[i, 2] + df_top.iloc[i, 3] * 1j) #-1 so bus 1 goes to index 0
elif df_top.iloc[i, 1] == 0: #if slack in the second column
vec_Y0[df_top.iloc[i, 0] - 1, 0] = 1 / (df_top.iloc[i, 2] + df_top.iloc[i, 3] * 1j)
G = np.real(Y) #real parts of Yij
B = np.imag(Y) #imaginary parts of Yij
# --------------------------- INITIAL DATA: Y, SHUNTS AND Y0i. DONE
# --------------------------- INITIAL DATA: BUSES INFORMATION
print(num_busos)
df_bus = pd.read_excel('Dades_v1.xlsx', sheet_name='Buses') #dataframe of the buses
if df_bus.shape[0] != num_busos:
print('Error: número de busos de ''Topologia'' i de ''Busos'' no és igual') #check if number of buses is coherent
num_busos_PQ = 0 # initialize number of PQ buses
num_busos_PV = 0 # initialize number of PV buses
vec_busos_PQ = np.zeros([0], dtype=int) # vector to store the indices of PQ buses
vec_busos_PV = np.zeros([0], dtype=int) # vector to store the indices of PV buses
vec_P = np.zeros((n - 1, 1), dtype=float) # data of active power
vec_Q = np.zeros((n - 1, 1), dtype=float) # data of reactive power
vec_V = np.zeros((n - 1, 1), dtype=float) # data of voltage magnitude
vec_W = np.zeros((n - 1, 1), dtype=float) # voltage magnitude squared
for i in range(df_bus.shape[0]): # find the voltage specified for the slack
if df_bus.iloc[i, 0] == 0:
V_slack = df_bus.iloc[i, 3]
for i in range(df_bus.shape[0]): # store the data of both PQ and PV
vec_P[df_bus.iloc[i, 0] - 1] = df_bus.iloc[i, 1] # -1 to start at 0
if df_bus.iloc[i, 4] == 'PQ':
vec_Q[df_bus.iloc[i, 0] - 1] = df_bus.iloc[i, 2] # -1 to start at 0
num_busos_PQ += 1 # identify as PQ bus
vec_busos_PQ = np.append(vec_busos_PQ, df_bus.iloc[i, 0])
elif df_bus.iloc[i, 4] == 'PV':
vec_V[df_bus.iloc[i, 0] - 1] = df_bus.iloc[i, 3] # -1 to start at 0
num_busos_PV += 1 # identify as PV bus
vec_busos_PV = np.append(vec_busos_PV, df_bus.iloc[i, 0])
for i in range(n - 1):
vec_W[i] = vec_V[i] * vec_V[i]
# --------------------------- INITIAL DATA: BUSES INFORMATION. DONE
# --------------------------- PREPARING IMPLEMENTATION
prof = 30 # depth
U = np.zeros((prof, n - 1), dtype=complex) # voltages
U_re = np.zeros((prof, n - 1), dtype=complex) # real part of voltages
U_im = np.zeros((prof, n - 1), dtype=complex) # imaginary part of voltages
X = np.zeros((prof, n - 1), dtype=complex) # X=1/conj(U)
X_re = np.zeros((prof, n - 1), dtype=complex) # real part of X
X_im = np.zeros((prof, n - 1), dtype=complex) # imaginary part of X
Q = np.zeros((prof, n - 1), dtype=complex) # unknown reactive powers
# .......................CALCULATION OF TERMS [0]
vec_U = np.dot(np.linalg.inv(Y), vec_Y0) # each element is roughly equal to 1
for i in range(n - 1):
U[0, i] = 1 # force each element to 1. Tiny difference
for i in range(n - 1):
X[0, i] = 1 / np.conj(U[0, i]) # could force them to be 1 directly
U_re[0, i] = np.real(U[0, i]) # could force them to be 1 directly
U_im[0, i] = np.imag(U[0, i]) # could force them to be 0 directly
X_re[0, i] = np.real(X[0, i]) # could force them to be 1 directly
X_im[0, i] = np.imag(X[0, i]) # could force them to be 0 directly
# .......................CALCULATION OF TERMS [0]. DONE
# .......................CALCULATION OF TERMS [1]
llarg = 2 * num_busos_PQ + 3 * num_busos_PV # number of unknowns
RHS = np.zeros((llarg, 1), dtype=float) # vector of the RHS data. Each element has to be real
k = 0 # index that will go through the rows
for i in range(n - 1): # filling the vector RHS
if i + 1 in vec_busos_PQ:
RHS_PQ_i = (V_slack - 1) * vec_Y0[i, 0] + (vec_P[i, 0] - vec_Q[i, 0] * 1j) * X[0, i] + U[0, i] * vec_shunts[i, 0]
RHS[k] = np.real(RHS_PQ_i)
RHS[k + 1] = np.imag(RHS_PQ_i)
k = k + 2
elif i + 1 in vec_busos_PV:
RHS_PV_i = (V_slack - 1) * vec_Y0[i, 0] + (vec_P[i, 0]) * X[0, i] + U[0, i] * vec_shunts[i, 0]
RHS[k] = np.real(RHS_PV_i)
RHS[k + 1] = np.imag(RHS_PV_i)
RHS[k + 2] = vec_W[i, 0] - 1
k = k + 3
mat = np.zeros((llarg, 2 * (n - 1) + num_busos_PV), dtype=complex) # constant matrix
k = 0 # index that will go through the rows
l = 0 # index that will go through the columns
for i in range(n - 1): # fill the matrix
if i + 1 in vec_busos_PQ:
l = 0
for j in range(n - 1):
if j+1 not in vec_busos_PV:
mat[k, l] = G[i, j]
mat[k + 1, l] = B[i, j]
mat[k, l + 1] = -B[i, j]
mat[k + 1, l + 1] = G[i, j]
l = l + 2 # 2 columns done
if j+1 in vec_busos_PV:
mat[k, l] = G[i, j]
mat[k + 1, l] = B[i, j]
mat[k, l + 1] = -B[i, j]
mat[k + 1, l + 1] = G[i, j]
mat[k, l + 2] = 0
mat[k + 1, l + 2] = 0
l = l + 3 # 3 columns done
k = k + 2 # 2 rows done
elif i + 1 in vec_busos_PV:
l = 0
for j in range(n - 1):
if j+1 not in vec_busos_PV:
mat[k, l] = G[i, j]
mat[k + 1, l] = B[i, j]
mat[k, l + 1] = -B[i, j]
mat[k + 1, l + 1] = G[i, j]
mat[k + 2, l] = 0
mat[k + 2, l + 1] = 0
l = l + 2 # 2 columns done
if j+1 in vec_busos_PV:
if j == i:
mat[k, l] = G[i, j]
mat[k + 1, l] = B[i, j]
mat[k, l + 1] = -B[i, j]
mat[k + 1, l + 1] = G[i, j]
mat[k + 2, l] = 2 * U_re[0, i]
mat[k + 2, l + 1] = 2 * U_im[0, i]
mat[k, l + 2] = -X_im[0, i]
mat[k + 1, l + 2] = X_re[0, i]
mat[k + 2, l + 2] = 0
l = l + 3 # 3 columns done
elif j != i:
mat[k, l] = G[i, j]
mat[k + 1, l] = B[i, j]
mat[k, l + 1] = -B[i, j]
mat[k + 1, l + 1] = G[i, j]
mat[k + 2, l] = 0
mat[k + 2, l + 1] = 0
mat[k, l + 2] = 0
mat[k + 1, l + 2] = 0
mat[k + 2, l + 2] = 0
l = l + 3
k = k + 3 # 3 rows done
dfx = pd.DataFrame(mat)
dfx.to_excel('Resultats3.xlsx', index=False, header=False) # to check the matrix
LHS = np.dot(np.linalg.inv(mat), RHS) # although mat only has to be inverted once
k = 0
for i in range(n - 1): # fill unknowns
if i + 1 in vec_busos_PQ:
U_re[1, i] = LHS[k, 0]
U_im[1, i] = LHS[k + 1, 0]
k = k + 2
elif i + 1 in vec_busos_PV:
U_re[1, i] = LHS[k, 0]
U_im[1, i] = LHS[k + 1, 0]
Q[0, i] = LHS[k + 2, 0]
k = k + 3
for i in range(n - 1): # complete the matrices U and X
U[1, i] = U_re[1, i] + U_im[1, i] * 1j
X[1, i] = (-X[0, i] * np.conj(U[1, i])) / np.conj(U[0, i])
X_re[1, i] = np.real(X[1, i])
X_im[1, i] = np.imag(X[1, i])
# .......................CALCULATION OF TERMS [1]. DONE
# .......................CALCULATION OF TERMS [>=2]
def convX(U,X,c,i): #convolution between U^* and X
suma=0
for k in range(1, c+1): # c+1 perquè arribi fins a c
suma=suma+np.conj(U[k, i])*X[c-k, i]
return suma
def sumaPV1(X,Q,c,i): #convolution between X and Q
suma=0
for k in range(1,c):
suma=suma+X[k,i]*Q[c-1-k,i]
return suma
def sumaPV3(U,c,i): #convolution between U and U
suma=0
for k in range(1,c):
suma=suma+U[k,i]*np.conj(U[c-k,i])
return suma
for c in range(2,prof): #c defines the current depth
RHS = np.zeros((llarg, 1), dtype=complex) #is real but a warning appears if it is not defined as complex
k = 0
for i in range(n - 1): #fill the vector RHS
if i + 1 in vec_busos_PQ:
RHS[k] = np.real((vec_P[i, 0] - vec_Q[i, 0] * 1j) * X[c-1, i] + U[c-1, i] * vec_shunts[i, 0])
RHS[k + 1] = np.imag((vec_P[i, 0] - vec_Q[i, 0] * 1j) * X[c-1, i] + U[c-1, i] * vec_shunts[i, 0])
k = k + 2
elif i + 1 in vec_busos_PV:
RHS[k] = np.real(sumaPV1(X,Q,c,i)*(-1)*1j+U[c-1,i]*vec_shunts[i,0]+X[c-1,i]*vec_P[i,0]) #afegit això últim!!
RHS[k+1]=np.imag(sumaPV1(X,Q,c,i)*(-1)*1j+U[c-1,i]*vec_shunts[i,0]+X[c-1,i]*vec_P[i,0]) #afegit això últim!!
RHS[k+2]=-sumaPV3(U,c,i)
k = k + 3
LHS = np.dot(np.linalg.inv(mat), RHS) #no need to invert another time the matrix mat!
k = 0
for i in range(n - 1): #grab the unknowns
if i + 1 in vec_busos_PQ:
U_re[c, i] = LHS[k, 0]
U_im[c, i] = LHS[k + 1, 0]
k = k + 2
elif i + 1 in vec_busos_PV:
U_re[c, i] = LHS[k, 0]
U_im[c, i] = LHS[k + 1, 0]
Q[c-1, i] = LHS[k + 2, 0]
k = k + 3
for i in range(n - 1): #complete the matrices
U[c, i] = U_re[c, i] + U_im[c, i] * 1j
X[c,i]=-convX(U,X,c,i)/ np.conj(U[0, i])
X_re[c, i] = np.real(X[c, i])
X_im[c, i] = np.imag(X[c, i])
matAdf=pd.DataFrame(U)
matAdf.to_excel('Resultats.xlsx', index=False, header=False) #to check the voltages
# .......................CALCULATION OF TERMS [>=2]. DONE
# --------------------------- CHECK DATA
U_final=np.zeros((n-1,1),dtype=complex) #final voltages
for j in range(n-1):
suma=0
for i in range(prof):
suma=suma+U[i,j]
U_final[j,0]=suma
print('V:\n', U_final)
print('\nVabs:\n', abs(U_final)) #absolute value
I_serie=np.dot(Y,U_final) #current flowing through series elements
I_inj_slack=np.zeros((n-1,1),dtype=complex) #current injected by the slack
for i in range(n-1):
I_inj_slack[i,0]=vec_Y0[i,0]*V_slack
I_shunt=np.zeros((n-1,1),dtype=complex) #current through shunts
for i in range(n-1):
I_shunt[i,0]=-U_final[i]*vec_shunts[i] #change the sign again
I_generada=I_serie-I_inj_slack+I_shunt #current leaving the bus
I_gen2=np.zeros((n-1,1),dtype=complex) #current entering the bus
for i in range(n-1):
if i + 1 in vec_busos_PQ:
I_gen2[i,0]=(vec_P[i,0]-vec_Q[i,0]*1j)/np.conj(U_final[i,0])
elif i + 1 in vec_busos_PV:
I_gen2[i,0]=(vec_P[i,0]-sum(Q[:,i]*1j))/np.conj(U_final[i,0])
print('\nNodal current balance:\n', I_gen2-I_generada) #balance of current. Should be almost 0
Ydf = pd.DataFrame(Q) #to check the unknown reactive power
Ydf.to_excel('Resultats2.xlsx', index=False, header=False)
# ----------------------------------------------------------------------------------------------------------------------
# Newton-Raphson comparison
# ----------------------------------------------------------------------------------------------------------------------
V_nr = np.array([1.+0.j,
0.9534313 -0.02268264j,
0.94114008-0.03194917j,
0.93894126-0.01876796j,
0.94938523-0.03417151j,
0.93991439-0.0126862j ,
0.92929251-0.02953734j,
0.93540855-0.02732348j,
0.9097992 -0.01911601j,
0.94537686-0.03929395j,
0.97988783-0.01482682j,
0.91993789-0.01068987j]) # voltage from GridCal with 1e-7 error
ok = np.isclose(np.abs(U_final[:, 0]), np.abs(V_nr[1:]), atol=1e-3).all()
print('\nVabs:\n', np.abs(U_final[:, 0])) #absolute value
print('Test passed', ok)
if not ok:
print('It should be:')
print(np.abs(V_nr[1:]))