diff --git a/configs/ohio_data_config.yaml b/configs/ohio_data_config.yaml index dec6af6..1637f05 100644 --- a/configs/ohio_data_config.yaml +++ b/configs/ohio_data_config.yaml @@ -1,5 +1,5 @@ # config for the full dataset builder -data_dir: "/home/fvaselli/Documents/PHD/TSA/TSA/data/data_ohio" +data_dir: "/home/fvaselli/Documents/PHD/TSA/TSA/data/test" # patients ids ids: ['540', '552', '544', '567', '584', '596'] test_ids: [] @@ -12,15 +12,15 @@ scale: 1 # outtype outtype: "History" # smooth -smooth: True +smooth: False # target_weight target_weight: 1 # standardize standardize: False standardize_by_ref: True standardize_params: - mean: 127.836 # 144.982 - std: 60.410 #57.941 + mean: 144.96 + std: 58.062 #57.941 # Computed Mean: 144.98199462890625, Computed Std: 58.11943817138672 # dataset smooth Computed Mean: 144.98204040527344, Computed Std: 57.940860748291016 # cutpoint (negative= take all the data) diff --git a/src/data_processing/build_ohio_dataset.py b/src/data_processing/build_ohio_dataset.py index ac57b52..03884f0 100644 --- a/src/data_processing/build_ohio_dataset.py +++ b/src/data_processing/build_ohio_dataset.py @@ -30,9 +30,9 @@ def build_dataset( files = [] files_ids = [] for pid in ids: - files += [f"/home/fvaselli/Documents/TSA/data/data_ohio/{pid}-ws-testing.xml"] + files += [f"/home/fvaselli/Documents/PHD/TSA/TSA/data/test/{pid}-ws-testing.xml"] reader = DataReader( - "ohio", f"/home/fvaselli/Documents/TSA/data/data_ohio/{pid}-ws-testing.xml", 5 + "ohio", f"/home/fvaselli/Documents/PHD/TSA/TSA/data/test/{pid}-ws-testing.xml", 5 ) train_data[pid] = reader.read() @@ -121,10 +121,10 @@ def main(data_config): # save data and targets as numpy arrays, in same file dataset = np.concatenate((data, targets), axis=1) - np.save("/home/fvaselli/Documents/TSA/data/data_ohio/dataset_ohio_smooth_stdbyupsampled.npy", dataset) + np.save("/home/fvaselli/Documents/PHD/TSA/TSA/data/test/dataset_ohio_stdby.npy", dataset) # dataset = tf.data.Dataset.from_tensor_slices((data, targets)) # save # dataset.save("data/dataset") if __name__ == "__main__": - main('/home/fvaselli/Documents/TSA/configs/ohio_data_config.yaml') \ No newline at end of file + main('/home/fvaselli/Documents/PHD/TSA/TSA/configs/ohio_data_config.yaml') \ No newline at end of file diff --git a/src/models/param_scan.py b/src/models/param_scan.py index 7baf9f4..6e8f940 100644 --- a/src/models/param_scan.py +++ b/src/models/param_scan.py @@ -359,7 +359,7 @@ def main(): config = yaml.load(f, Loader=yaml.FullLoader) # models = ["cnn", "rnn", "transformer"] - targets = ["regression", "classification", "multi_classification"] + targets = ["multi_classification"] parser = argparse.ArgumentParser() parser.add_argument( diff --git a/src/utils.py b/src/utils.py index aaf9c0d..25e0279 100644 --- a/src/utils.py +++ b/src/utils.py @@ -197,10 +197,10 @@ def check_classification( pred *= 100 true *= 100 - # NOTE now it is 0 for hypo and 1 for hyper - # diffrent from exam project!! - pred_label = (pred[:, ind] > threshold).astype(int) # Assuming feature_dim = 1 - true_label = (true[:, ind] > threshold).astype(int) # Adjust index if different + # NOTE now it is 1 for hypo and 0 for hyper + # we make it so for the other models + pred_label = (pred[:, ind] < threshold).astype(int) # Assuming feature_dim = 1 + true_label = (true[:, ind] < threshold).astype(int) # Adjust index if different fpr, tpr, _ = roc_curve(true_label, pred_label) roc_auc = auc(fpr, tpr) @@ -240,7 +240,7 @@ def on_epoch_end(self, epoch, logs=None): specificity = tn / (tn + fp) precision = tp / (tp + fp) npv = tn / (tn + fn) - f1 = 2 * (precision * sensitivity) / (precision + sensitivity) + f1 = 2 * (precision * sensitivity) / (precision + sensitivity) # in this way the f1 is relative to the hyper class tf.summary.scalar("Accuracy", accuracy, step=epoch) tf.summary.scalar("Sensitivity", sensitivity, step=epoch) tf.summary.scalar("Specificity", specificity, step=epoch) @@ -394,10 +394,10 @@ def plot_to_image(self, figure): def check_classification1(true, pred, threshold=0.5): # Assuming true and pred have shape [batch_size, 1] - # 0 for hypo and 1 for hyper - pred_label = (pred >= threshold).astype(int) + # 1 for hypo and 0 for hyper + pred_label = (pred < threshold).astype(int) # - true_label = (true >= threshold).astype(int) + true_label = (true < threshold).astype(int) print("true_label shape:", true_label.shape) print("pred_label shape:", pred_label.shape) print("example pred vs true:", pred_label[0], true_label[0])