From a01b5204ea9996896dd328d9cef3002cb64cde11 Mon Sep 17 00:00:00 2001 From: JiaWei Jiang Date: Sat, 30 Nov 2024 22:44:52 +0800 Subject: [PATCH] docs: Fix sd doc code lines Signed-off-by: JiaWei Jiang --- .../data_types_and_io/structureddataset.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/docs/user_guide/data_types_and_io/structureddataset.md b/docs/user_guide/data_types_and_io/structureddataset.md index f22aaac077..caacb15b89 100644 --- a/docs/user_guide/data_types_and_io/structureddataset.md +++ b/docs/user_guide/data_types_and_io/structureddataset.md @@ -68,7 +68,7 @@ First, initialize column types you want to extract from the `StructuredDataset`. ```{literalinclude} /examples/data_types_and_io/data_types_and_io/structured_dataset.py :caption: data_types_and_io/structured_dataset.py -:lines: 31-32 +:lines: 36-37 ``` Define a task that opens a structured dataset by calling `all()`. @@ -78,7 +78,7 @@ For instance, you can use ``pa.Table`` to convert the Pandas DataFrame to a PyAr ```{literalinclude} /examples/data_types_and_io/data_types_and_io/structured_dataset.py :caption: data_types_and_io/structured_dataset.py -:lines: 42-52 +:lines: 47-57 ``` The code may result in runtime failures if the columns do not match. @@ -91,7 +91,7 @@ and enable the CSV serialization by annotating the structured dataset with the C ```{literalinclude} /examples/data_types_and_io/data_types_and_io/structured_dataset.py :caption: data_types_and_io/structured_dataset.py -:lines: 58-72 +:lines: 63-77 ``` ## Storage driver and location @@ -230,14 +230,14 @@ and the byte format, which in this case is `PARQUET`. ```{literalinclude} /examples/data_types_and_io/data_types_and_io/structured_dataset.py :caption: data_types_and_io/structured_dataset.py -:lines: 128-130 +:lines: 133-135 ``` You can now use `numpy.ndarray` to deserialize the parquet file to NumPy and serialize a task's output (NumPy array) to a parquet file. ```{literalinclude} /examples/data_types_and_io/data_types_and_io/structured_dataset.py :caption: data_types_and_io/structured_dataset.py -:lines: 135-148 +:lines: 140-153 ``` :::{note} @@ -248,7 +248,7 @@ You can run the code locally as follows: ```{literalinclude} /examples/data_types_and_io/data_types_and_io/structured_dataset.py :caption: data_types_and_io/structured_dataset.py -:lines: 152-156 +:lines: 157-161 ``` ### The nested typed columns @@ -261,7 +261,7 @@ Nested field StructuredDataset should be run when flytekit version > 1.11.0. ```{literalinclude} /examples/data_types_and_io/data_types_and_io/structured_dataset.py :caption: data_types_and_io/structured_dataset.py -:lines: 158-285 +:lines: 163-290 ``` [flytesnacks]: https://github.com/flyteorg/flytesnacks/tree/master/examples/data_types_and_io/