-
Notifications
You must be signed in to change notification settings - Fork 355
/
MMult_4x4_3.c
90 lines (66 loc) · 3.04 KB
/
MMult_4x4_3.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/* Create macros so that the matrices are stored in column-major order */
#define A(i,j) a[ (j)*lda + (i) ]
#define B(i,j) b[ (j)*ldb + (i) ]
#define C(i,j) c[ (j)*ldc + (i) ]
/* Routine for computing C = A * B + C */
void AddDot( int, double *, int, double *, double * );
void MY_MMult( int m, int n, int k, double *a, int lda,
double *b, int ldb,
double *c, int ldc )
{
int i, j;
for ( j=0; j<n; j+=4 ){ /* Loop over the columns of C, unrolled by 4 */
for ( i=0; i<m; i+=4 ){ /* Loop over the rows of C */
/* Update C( i,j ), C( i,j+1 ), C( i,j+2 ), and C( i,j+3 ) in
one routine (four inner products) */
AddDot4x4( k, &A( i,0 ), lda, &B( 0,j ), ldb, &C( i,j ), ldc );
}
}
}
void AddDot4x4( int k, double *a, int lda, double *b, int ldb, double *c, int ldc )
{
/* So, this routine computes a 4x4 block of matrix A
C( 0, 0 ), C( 0, 1 ), C( 0, 2 ), C( 0, 3 ).
C( 1, 0 ), C( 1, 1 ), C( 1, 2 ), C( 1, 3 ).
C( 2, 0 ), C( 2, 1 ), C( 2, 2 ), C( 2, 3 ).
C( 3, 0 ), C( 3, 1 ), C( 3, 2 ), C( 3, 3 ).
Notice that this routine is called with c = C( i, j ) in the
previous routine, so these are actually the elements
C( i , j ), C( i , j+1 ), C( i , j+2 ), C( i , j+3 )
C( i+1, j ), C( i+1, j+1 ), C( i+1, j+2 ), C( i+1, j+3 )
C( i+2, j ), C( i+2, j+1 ), C( i+2, j+2 ), C( i+2, j+3 )
C( i+3, j ), C( i+3, j+1 ), C( i+3, j+2 ), C( i+3, j+3 )
in the original matrix C */
/* First row */
AddDot( k, &A( 0, 0 ), lda, &B( 0, 0 ), &C( 0, 0 ) );
AddDot( k, &A( 0, 0 ), lda, &B( 0, 1 ), &C( 0, 1 ) );
AddDot( k, &A( 0, 0 ), lda, &B( 0, 2 ), &C( 0, 2 ) );
AddDot( k, &A( 0, 0 ), lda, &B( 0, 3 ), &C( 0, 3 ) );
/* Second row */
AddDot( k, &A( 1, 0 ), lda, &B( 0, 0 ), &C( 1, 0 ) );
AddDot( k, &A( 1, 0 ), lda, &B( 0, 1 ), &C( 1, 1 ) );
AddDot( k, &A( 1, 0 ), lda, &B( 0, 2 ), &C( 1, 2 ) );
AddDot( k, &A( 1, 0 ), lda, &B( 0, 3 ), &C( 1, 3 ) );
/* Third row */
AddDot( k, &A( 2, 0 ), lda, &B( 0, 0 ), &C( 2, 0 ) );
AddDot( k, &A( 2, 0 ), lda, &B( 0, 1 ), &C( 2, 1 ) );
AddDot( k, &A( 2, 0 ), lda, &B( 0, 2 ), &C( 2, 2 ) );
AddDot( k, &A( 2, 0 ), lda, &B( 0, 3 ), &C( 2, 3 ) );
/* Four row */
AddDot( k, &A( 3, 0 ), lda, &B( 0, 0 ), &C( 3, 0 ) );
AddDot( k, &A( 3, 0 ), lda, &B( 0, 1 ), &C( 3, 1 ) );
AddDot( k, &A( 3, 0 ), lda, &B( 0, 2 ), &C( 3, 2 ) );
AddDot( k, &A( 3, 0 ), lda, &B( 0, 3 ), &C( 3, 3 ) );
}
/* Create macro to let X( i ) equal the ith element of x */
#define X(i) x[ (i)*incx ]
void AddDot( int k, double *x, int incx, double *y, double *gamma )
{
/* compute gamma := x' * y + gamma with vectors x and y of length n.
Here x starts at location x with increment (stride) incx and y starts at location y and has (implicit) stride of 1.
*/
int p;
for ( p=0; p<k; p++ ){
*gamma += X( p ) * y[ p ];
}
}