You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras.backend import categorical_crossentropy
from tensorflow.keras.models import Model
import time
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
net = tf.keras.models.Sequential([tf.keras.layers.Input(shape=(784,)),Dense(128, activation='relu'), Dense(128, activation='relu'),Dense(10, activation='softmax')])
def ll(targets,preds):
return tf.reduce_mean(categorical_crossentropy(targets, preds))
adam = tf.keras.optimizers.Adam(learning_rate = 1e-3)
net.compile(loss=ll, optimizer=adam)
z = tf.cast(x_train[0:50],'float32')
y = tf.one_hot(y_train[0:50],10)
z_f =tf.reshape(z,(-1,784))
t0 = time.time()
for i in range(1000):
net.train_on_batch(z_f,y)
t = time.time()-t0
print(t)
In my computer, the time is 5.807 with tf-2.
I alse run another code:
import tensorflow as tf
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.backend import categorical_crossentropy
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.keras.models import Model
import time
sess = tf.Session()
img = tf.placeholder(tf.float32, shape=(None, 784))
x = Dense(128, activation='relu')(img) # fully-connected layer with 128 units and ReLU activation
x = Dense(128, activation='relu')(x)
preds = Dense(10, activation='softmax')(x) # output layer with 10 units and a softmax activation
init_op = tf.global_variables_initializer()
sess.run(init_op)
t0 = time.time()
with sess.as_default():
for i in range(1000):
batch = mnist_data.train.next_batch(50)
train_step.run(feed_dict={img: batch[0],labels: batch[1]})
t = time.time()-t0
print(t)
Then the time is 3.658. with tf-1.14.0.
How can I change my first code?
The text was updated successfully, but these errors were encountered:
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras.backend import categorical_crossentropy
from tensorflow.keras.models import Model
import time
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
net = tf.keras.models.Sequential([tf.keras.layers.Input(shape=(784,)),Dense(128, activation='relu'), Dense(128, activation='relu'),Dense(10, activation='softmax')])
def ll(targets,preds):
return tf.reduce_mean(categorical_crossentropy(targets, preds))
adam = tf.keras.optimizers.Adam(learning_rate = 1e-3)
net.compile(loss=ll, optimizer=adam)
z = tf.cast(x_train[0:50],'float32')
y = tf.one_hot(y_train[0:50],10)
z_f =tf.reshape(z,(-1,784))
t0 = time.time()
for i in range(1000):
net.train_on_batch(z_f,y)
t = time.time()-t0
print(t)
In my computer, the time is 5.807 with tf-2.
I alse run another code:
import tensorflow as tf
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.backend import categorical_crossentropy
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.keras.models import Model
import time
sess = tf.Session()
img = tf.placeholder(tf.float32, shape=(None, 784))
x = Dense(128, activation='relu')(img) # fully-connected layer with 128 units and ReLU activation
x = Dense(128, activation='relu')(x)
preds = Dense(10, activation='softmax')(x) # output layer with 10 units and a softmax activation
labels = tf.placeholder(tf.float32, shape=(None, 10))
loss = tf.reduce_mean(categorical_crossentropy(labels, preds))
mnist_data = input_data.read_data_sets('MNIST_data', one_hot=True)
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
init_op = tf.global_variables_initializer()
sess.run(init_op)
t0 = time.time()
with sess.as_default():
for i in range(1000):
batch = mnist_data.train.next_batch(50)
train_step.run(feed_dict={img: batch[0],labels: batch[1]})
t = time.time()-t0
print(t)
Then the time is 3.658. with tf-1.14.0.
How can I change my first code?
The text was updated successfully, but these errors were encountered: