-
Notifications
You must be signed in to change notification settings - Fork 5
/
conure_ret_t3.py
300 lines (249 loc) · 13.1 KB
/
conure_ret_t3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import tensorflow as tf
import data_loader_neg as data_loader
import generator_prune_regbig as generator_recsys
import time
import numpy as np
import argparse
import config
def random_neq(l, r, s):
t = np.random.randint(l, r)
while t == s:
t = np.random.randint(l, r)
return t
def random_neq(l, r, s):
t = np.random.randint(l, r)
while t == s:
t = np.random.randint(l, r)
return t
def random_negs(l,r,no,s):
# set_s=set(s)
negs = []
for i in range(no):
t = np.random.randint(l, r)
# while (t in set_s):
while (t== s):
t = np.random.randint(l, r)
negs.append(t)
return negs
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--top_k', type=int, default=5,
help='Sample from top k predictions')
parser.add_argument('--beta1', type=float, default=0.9,
help='hyperpara-Adam')
#history_sequences_20181014_fajie_smalltest.csv
parser.add_argument('--datapath', type=str, default='Data/Session/original_desen_finetune_like_nouserID.csv ',
help='data path')
parser.add_argument('--datapath_index', type=str, default='Data/Session/index.csv',
help='data path')
parser.add_argument('--eval_iter', type=int, default=500,
help='Sample generator output evry x steps')
parser.add_argument('--save_para_every', type=int, default=500,
help='save model parameters every')
parser.add_argument('--tt_percentage', type=float, default=0.2,
help='0.2 means 80% training 20% testing')
parser.add_argument('--rho', type=float, default=0.3,
help='static sampling in LambdaFM paper')
parser.add_argument('--is_generatesubsession', type=bool, default=False,
help='whether generating a subsessions, e.g., 12345-->01234,00123,00012 It may be useful for very some very long sequences')
parser.add_argument('--has_positionalembedding', type=bool, default=False,
help='whether contains positional embedding before performing cnnn')
parser.add_argument('--max_position', type=int, default=1000,
help='maximum number of for positional embedding, it has to be larger than the sequence lens')
args = parser.parse_args()
dl = data_loader.Data_Loader(
{'model_type': 'generator', 'dir_name': args.datapath, 'dir_name_index': args.datapath_index,
'lambdafm_rho': args.rho})
items = dl.item_dict
items_len = len(items)
print "len(source)", len(items)
# targets_len=len(targets)+items_len
targets = dl.target_dict
targets_len=len(targets)
print "len(targets)", targets_len
targets_len_nozero = targets_len - 1
print "len(allitems)", dl.embed_len
bigemb = dl.embed_len
top_k=args.top_k
all_samples = dl.example
# Randomly shuffle data
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(all_samples)))
all_samples = all_samples[shuffle_indices]
# Split train/test set
dev_sample_index = -1 * int(args.tt_percentage * float(len(all_samples)))
train_set, valid_set = all_samples[:dev_sample_index], all_samples[dev_sample_index:]
model_para = {
'item_size': len(items),
'bigemb':bigemb,
'dilated_channels': 256,
'target_item_size': targets_len,
'dilations': [1,4,1,4,1,4,1,4,],
'kernel_size': 3,
'learning_rate':0.0001,
'batch_size':512,
'iterations':100,
'has_positionalembedding': args.has_positionalembedding,
'max_position': args.max_position,
'is_negsample':True,
'taskID':config.taskID_3rd #the second task indexing from 10001
}
sess = tf.Session()
taskID=model_para['taskID']
itemrec = generator_recsys.NextItNet_Decoder(model_para)
itemrec.train_graph(ispre=False)
for index in range(taskID - config.taskID_1st):
t_name = config.taskID_1st + index
if index == 0:
softmax_w = tf.get_variable("softmax_w_{}".format(t_name),
[model_para['item_size'], model_para['dilated_channels']],
tf.float32,
tf.random_normal_initializer(0.0, 0.01))
softmax_b = tf.get_variable("softmax_b_{}".format(t_name), [model_para['item_size']], tf.float32,
tf.constant_initializer(0.1))
else:
softmax_size = config.task_conf['task_itemsize'][index]
softmax_w = tf.get_variable("softmax_w_{}".format(t_name),
[softmax_size, model_para['dilated_channels']],
tf.float32,
tf.random_normal_initializer(0.0, 0.01))
init = tf.global_variables_initializer()
trainable_vars = tf.trainable_variables()
allable_vars=tf.all_variables()
variables_to_restore =trainable_vars
bias=[v for v in allable_vars if v.name.find("bias") != -1]
mask_var_all=[v for v in allable_vars if v.name.find("mask_val") != -1]
# ln_var_all = [v for v in trainable_vars if v.name.find("layer_norm") != -1]
# ln_var = [v for v in ln_var_all if v.name.find(str(taskID) + "_layer_norm") != -1] # current
weight = [v for v in trainable_vars if v.name.find("weight") != -1]
softmax_name_curtask = "softmax_w_{}".format(taskID)
softmax_var = [v for v in trainable_vars if v.name.find(softmax_name_curtask) != -1]
variables_to_restore.extend(bias)
variables_to_restore.extend(mask_var_all)
sess.run(init)
saver = tf.train.Saver(variables_to_restore)
saver.restore(sess, "Data/Models/generation_model_t3/model_nextitnet_transfer_pretrain.ckpt")
saver_ft = tf.train.Saver()
source_item_embedding = itemrec.dilate_input
# source_item_embedding = tf.reduce_mean(source_item_embedding, 1)
source_item_embedding = tf.reduce_mean(source_item_embedding[:, -1:, :], 1) # use the last token
embedding_size = tf.shape(source_item_embedding)[-1]
with tf.variable_scope("target-item"):
allitem_embeddings_target = itemrec.allitem_embeddings_out # only difference
is_training = tf.placeholder(tf.bool, shape=())
# training
itemseq_input_target_pos = tf.placeholder('int32',
[None, None], name='itemseq_input_pos')
itemseq_input_target_neg = tf.placeholder('int32',
[None, None], name='itemseq_input_neg')
target_item_embedding_pos = tf.nn.embedding_lookup(allitem_embeddings_target,
itemseq_input_target_pos,
name="target_item_embedding_pos")
target_item_embedding_neg = tf.nn.embedding_lookup(allitem_embeddings_target,
itemseq_input_target_neg,
name="target_item_embedding_neg")
pos_score = source_item_embedding * tf.reshape(target_item_embedding_pos, [-1, embedding_size])
neg_score = source_item_embedding * tf.reshape(target_item_embedding_neg, [-1, embedding_size])
pos_logits = tf.reduce_sum(pos_score, -1)
neg_logits = tf.reduce_sum(neg_score, -1)
logits_2D = tf.matmul(source_item_embedding, tf.transpose(allitem_embeddings_target))
top_k_test = tf.nn.top_k(logits_2D, k=args.top_k, name='top-k')
tf.add_to_collection("top_k", top_k_test[1])
# target_loss = tf.reduce_mean(
# - tf.log(tf.sigmoid(pos_logits) + 1e-24) -
# tf.log(1 - tf.sigmoid(neg_logits) + 1e-24)
# )
target_loss = -tf.reduce_mean(tf.log(tf.sigmoid(pos_logits - neg_logits))) + 1e-24
reg_losses = tf.reduce_mean(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
# reg_losses = 0.001 * tf.reduce_mean([tf.nn.l2_loss(v) for v in tf.trainable_variables()])
target_loss += reg_losses
loss = target_loss
# optimizer = tf.train.AdamOptimizer(model_para['learning_rate'], beta1=args.beta1, name='Adam2').minimize(loss)
# optimizer = tf.train.AdamOptimizer(model_para['learning_rate'], beta1=args.beta1, name='Adam2').minimize(loss,var_list=[softmax_var])
optimizer = tf.train.AdamOptimizer(model_para['learning_rate'], beta1=args.beta1, name='Adam2').minimize(loss,
var_list=[
softmax_var,weight])
unitialized_vars = []
for var in tf.global_variables():
try:
sess.run(var)
except tf.errors.FailedPreconditionError:
unitialized_vars.append(var)
initialize_op = tf.variables_initializer(unitialized_vars)
sess.run(initialize_op)
numIters = 1
for iter in range(model_para['iterations']):
batch_no = 0
batch_size = model_para['batch_size']
while (batch_no + 1) * batch_size < train_set.shape[0]:
start = time.time()
# the first n-1 is source, the last one is target
# item_batch=[[1,2,3],[4,5,6]]
item_batch = train_set[batch_no * batch_size: (batch_no + 1) * batch_size, :]
pos_batch = item_batch[:, -1] # [3 6] used for negative sampling
source_batch = item_batch[:, :-2] #
pos_target = item_batch[:, -1:] # [[3][6]]
neg_target = np.random.choice(targets_len_nozero, len(pos_batch), p=dl.prob)
neg_target = np.array(neg_target + 1)
neg_target = neg_target[:, np.newaxis]
_, loss_out = sess.run(
[optimizer, loss],
feed_dict={
itemrec.itemseq_input: item_batch,
itemseq_input_target_pos: pos_target,
itemseq_input_target_neg: neg_target
})
end = time.time()
if numIters % args.eval_iter == 0:
print "-------------------------------------------------------train1"
print "LOSS: {}\tITER: {}\tBATCH_NO: {}\t STEP:{}\t total_batches:{}".format(
loss_out, iter, batch_no, numIters, train_set.shape[0] / batch_size)
# print "TIME FOR BATCH", end - start
print "TIME FOR ITER (mins)", (end - start) * (train_set.shape[0] / batch_size) / 60.0
batch_no += 1
if numIters % args.eval_iter == 0:
batch_no_test = 0
batch_size_test = batch_size * 1
# batch_size_test = 1
hits = [] # 1
mrrs = [] # ---add 1
while (batch_no_test + 1) * batch_size_test < valid_set.shape[0]:
if (numIters / (args.eval_iter) < 10):
if (batch_no_test > 95):
break
else:
if (batch_no_test > 95):
break
item_batch = valid_set[batch_no_test * batch_size_test: (batch_no_test + 1) * batch_size_test, :]
pos_batch = item_batch[:, -1] # [3 6] used for negative sampling
[top_k_batch] = sess.run(
[top_k_test],
feed_dict={
itemrec.itemseq_input: item_batch
# itemseq_input_target_label: target
})
top_k = np.squeeze(
top_k_batch[1]) # remove one dimension since e.g., [[[1,2,4]],[[34,2,4]]]-->[[1,2,4],[34,2,4]]
for i in range(top_k.shape[0]):
top_k_per_batch = top_k[i]
predictmap = {ch: i for i, ch in enumerate(top_k_per_batch)} # add 2
true_item = pos_batch[i]
rank = predictmap.get(true_item) # add 3
if rank == None:
hits.append(0.0)
mrrs.append(0.0) # add 5
else:
hits.append(1.0)
mrrs.append(1.0 / (rank + 1)) # add 4
batch_no_test += 1
print "-------------------------------------------------------Accuracy"
if len(hits) != 0:
print "Accuracy hit_n:", sum(hits) / float(len(hits)), "MRR_n:", sum(mrrs) / float(len(mrrs)) # 5
if numIters % args.save_para_every == 0:
# print "weght_0", sess.run(weight[11])
save_path = saver_ft.save(sess,
"Data/Models/generation_model_finetune_t3/model_nextitnet_transfer_pretrain.ckpt".format(iter, numIters))
print "Save models done!"
numIters += 1
if __name__ == '__main__':
main()