How improve Textcat-multi classify result accuracy used by jieba or pkusage? #13522
Unanswered
wuye251
asked this question in
Help: Model Advice
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
I'm use spacy.chinese model with jieba segmenter. But I find result is very bad. I don't know the reason. Put my code below. Thanks the good soul help! Spacy version:3.6.1 Python Version:3.10.
output
我讨厌这部电影 {'差评': 0.9159942269325256, '好评': 0.9901401400566101, '咨询商品': 0.9551239013671875, '售后-投诉': 0.8971258997917175, '售后-点赞': 0.3419587016105652, '售后-退换': 0.7432483434677124, '查询信用卡账单': 0.8540969491004944, '订票': 0.9098125100135803, '球类运动': 0.29566851258277893, '天气': 0.4786415100097656, '国家-编辑': 0.5186322331428528, '电商-客服-售后': 0.9906345009803772, '负例语料联动': 0.9211296439170837, '表扬': 0.5615023374557495, '电商-客服-售前': 0.33090463280677795, '验证未训练时字段展示': 0.2705373764038086}
查询账单 {'差评': 0.9369145035743713, '好评': 0.9800768494606018, '咨询商品': 0.9792625904083252, '售后-投诉': 0.5187459588050842, '售后-点赞': 0.8109645247459412, '售后-退换': 0.9886360168457031, '查询信用卡账单': 0.9981147050857544, '订票': 0.8363357186317444, '球类运动': 0.9094472527503967, '天气': 0.6167519092559814, '国家-编辑': 0.3675537109375, '电商-客服-售后': 0.9292000532150269, '负例语料联动': 0.8542944192886353, '表扬': 0.49599653482437134, '电商-客服-售前': 0.8967403769493103, '验证未训练时字段展示': 0.7517518997192383}
Beta Was this translation helpful? Give feedback.
All reactions