diff --git a/zairachem/pool/bagger.py b/zairachem/pool/bagger.py index 759248eb..535c33d0 100644 --- a/zairachem/pool/bagger.py +++ b/zairachem/pool/bagger.py @@ -5,9 +5,10 @@ import joblib import h5py import collections +from scipy.special import expit from sklearn.linear_model import LogisticRegressionCV, LinearRegression from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor -from sklearn.preprocessing import RobustScaler +from sklearn.preprocessing import RobustScaler, PowerTransformer from sklearn.metrics import roc_curve, auc, r2_score from .. import ZairaBase @@ -155,8 +156,8 @@ def save(self, filename): class PoolClassifier(object): - def __init__(self, path, mode="scaling"): - assert mode in ["scaling", "median", "model"] + def __init__(self, path, mode="weighting"): + assert mode in ["weighting", "median", "model"] self.path = path if not os.path.exists(self.path): os.makedirs(self.path, exist_ok=True) @@ -168,7 +169,8 @@ def _get_model_filename(self, n): def _fit_just_median(self, df_X, df_y): return np.median(np.array(df_X), axis=1) - def _fit_scaling(self, df_X, df_y): + def _fit_weighting(self, df_X, df_y): + y = np.array(df_y).ravel() cols = list(df_X.columns) X = np.array(df_X) p25 = np.percentile(X.ravel(), 25) @@ -177,10 +179,13 @@ def _fit_scaling(self, df_X, df_y): scale = (p25, p50, p75) for c in cols: X = np.array(df_X[c]).reshape(-1, 1) - mdl = RobustScaler() - mdl.fit(X) + mdl0 = PowerTransformer() + mdl0.fit(X) + X = mdl0.transform(X) + mdl1 = LogisticRegressionCV() + mdl1.fit(X, y) filename = self._get_model_filename(c) - joblib.dump(mdl, filename) + joblib.dump((mdl0, mdl1), filename) filename = self._get_model_filename("overall") joblib.dump(scale, filename) filename = self._get_model_filename("weighting") @@ -188,7 +193,7 @@ def _fit_scaling(self, df_X, df_y): ws.distance_to_leads() ws.importance() ws.save(filename) - return self._predict_scaling(df_X) + return self._predict_weighting(df_X) def _fit_model(self, df_X, df_y): y = np.array(df_y).ravel() @@ -204,22 +209,19 @@ def _fit_model(self, df_X, df_y): def _predict_just_median(self, df_X): return np.median(np.array(df_X), axis=1) - def _predict_scaling(self, df_X): + def _predict_weighting(self, df_X): cols = list(df_X.columns) Y_hat = [] for c in cols: filename = self._get_model_filename(c) if os.path.exists(filename): - mdl = joblib.load(filename) + mdl0, mdl1 = joblib.load(filename) X = np.array(df_X[c]).reshape(-1, 1) - y_hat = mdl.transform(X).ravel() + X = mdl0.transform(X) + y_hat = mdl1.predict_proba(X)[:,1] Y_hat += [y_hat] Y_hat = np.array(Y_hat).T filename = self._get_model_filename("overall") - scale = joblib.load(filename) - iqr = scale[-1] - scale[0] - med = scale[1] - Y_hat = Y_hat * iqr + med filename = self._get_model_filename("weighting") weights = joblib.load(filename) wvals = weights["weights"] @@ -248,16 +250,16 @@ def _predict_model(self, df_X): return np.median(Y_hat, axis=1) def fit(self, df_X, df_y): - if self.mode == "scaling": - return self._fit_scaling(df_X, df_y) + if self.mode == "weighting": + return self._fit_weighting(df_X, df_y) if self.mode == "median": return self._fit_just_median(df_X, df_y) if self.mdoe == "model": return self._fit_model(df_X, df_y) def predict(self, df_X): - if self.mode == "scaling": - return self._predict_scaling(df_X) + if self.mode == "weighting": + return self._predict_weighting(df_X) if self.mode == "median": return self._predict_just_median(df_X) if self.mode == "model":