Skip to content
/ fre Public
forked from frejs/fre

πŸ‘» Tiny Footprint Concurrent UI library for Fiber.

License

Notifications You must be signed in to change notification settings

edmorrish/fre

Β 
Β 

Repository files navigation

fre logo

Fre

πŸ‘» Tiny Concurrent UI library with Fiber.

Build Status Code Coverage npm-v npm-d brotli

  • Concurrent Mode β€” This is an amazing idea, which implements the coroutine scheduler in JavaScript, it also called Time slicing.

  • O(ND) reconcilation algorithm β€” Fre has a minimal longest-common-subsequence algorithm, It supported keyed, pre-process.

  • Do more with less β€” After tree shaking, project of hello world is only 1KB, but it has most features, virtual DOM, hooks API, Fragments, Fre.memo and so on.

Contributors

Usage

yarn add fre
import { render, useState } from 'fre'

function App() {
  const [count, setCount] = useState(0)
  return <>
      <h1>{count}</h1>
      <button onClick={() => setCount(count + 1)}>+</button>
    </>
}

render(<App/>, document.body)

Hooks API

useState

useState is a base API, It will receive initial state and return an Array

You can use it many times, new state is available when component is rerender

function App() {
  const [up, setUp] = useState(0)
  const [down, setDown] = useState(0)
  return (
    <>
      <h1>{up}</h1>
      <button onClick={() => setUp(up + 1)}>+</button>
      <h1>{down}</h1>
      <button onClick={() => setDown(down - 1)}>-</button>
    </>
  )
}

useReducer

useReducer and useState are almost the same,but useReducer needs a global reducer

function reducer(state, action) {
  switch (action.type) {
    case 'up':
      return { count: state.count + 1 }
    case 'down':
      return { count: state.count - 1 }
  }
}

function App() {
  const [state, dispatch] = useReducer(reducer, { count: 1 })
  return (
    <>
      {state.count}
      <button onClick={() => dispatch({ type: 'up' })}>+</button>
      <button onClick={() => dispatch({ type: 'down' })}>-</button>
    </>
  )
}

useEffect

It is the execution and cleanup of effects, which is represented by the second parameter

useEffect(f)       //  effect (and clean-up) every time
useEffect(f, [])   //  effect (and clean-up) only once in a component's life
useEffect(f, [x])  //  effect (and clean-up) when property x changes in a component's life
function App({ flag }) {
  const [count, setCount] = useState(0)
  useEffect(() => {
    document.title = 'count is ' + count
  }, [flag])
  return (
    <>
      <h1>{count}</h1>
      <button onClick={() => setCount(count + 1)}>+</button>
    </>
  )
}

If it returns a function, the function can do cleanups:

useEffect(() => {
  document.title = 'count is ' + count
  return () => {
    store.unsubscribe()
  }
}, [])

useLayout

More like useEffect, but useLayout is sync and blocking UI.

useLayout(() => {
  document.title = 'count is ' + count
}, [flag])

useMemo

useMemo has the same rules as useEffect, but useMemo will return a cached value.

const memo = (c) => (props) => useMemo(() => c, [Object.values(props)])

useCallback

useCallback is based useMemo, it will return a cached function.

const cb = useCallback(() => {
  console.log('cb was cached.')
}, [])

useRef

useRef will return a function or an object.

function App() {
  useEffect(() => {
    console.log(t) // { current:<div>t</div> }
  })
  const t = useRef(null)
  return <div ref={t}>t</div>
}

If it uses a function, it can return a cleanup and executes when removed.

function App() {
  const t = useRef((dom) => {
    if (dom) {
      doSomething()
    } else {
      cleanUp()
    }
  })
  return flag && <span ref={t}>I will removed</span>
}

Fragments

// fragment
function App() {
  return <>{something}</>
}
// render array
function App() {
  return [a, b, c]
}

jsx2

plugins: [
  [
    '@babel/plugin-transform-react-jsx',
    {
      runtime: 'automatic',
      importSource: 'fre',
    },
  ],
]

Compare with other frameworks

The comparison is difficult because the roadmap and trade-offs of each framework are different, but we have to do so.

  • react

React is the source of inspiration for fre. Their implementation and asynchronous rendering are similar. The most amazing thing is concurrent mode, which means that react and fre have the same roadmap -- Exploring concurrent use cases.

But at the same time, fre has obvious advantages in reconciliation algorithm and bundle size.

  • vue / preact

To some extent, vue and preact are similar. They have similar synchronous rendering, only the API is different.

The reconciliation algorithm of fre is similar to vue3, but the biggest difference is that vue/preact do not support concurrent mode, this means that the roadmap is totally different.

framework concurrent offscreen reconcilation algorithm bundle size
fre2 √ √ β˜…β˜…β˜…β˜… 2kb
react18 √ √ β˜…β˜… 43kb
vue3 Γ— x β˜…β˜…β˜…β˜…β˜… 33kb
preactX Γ— x β˜…β˜…β˜… 4kb

License

MIT @yisar

FOSSA Status

About

πŸ‘» Tiny Footprint Concurrent UI library for Fiber.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • TypeScript 97.9%
  • JavaScript 2.1%