You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I attempted to re-run the new v3.0.x of IGFold with openmm on my system last night. After updating and upgrading the packages, I tried to run the notebook, and I found the following error being thrown from the script AntiBERTy.py.
File "/xxx/yyy/anaconda3/envs/igfold2/lib/python3.10/site-packages/antiberty/AntiBERTyRunner.py", line 88, in embed
embeddings[i] = embeddings[i][:, a == 1]
RuntimeError: indices should be either on cpu or on the same device as the indexed tensor (cpu)
To resolve this, I checked which devices the variables embeddings and attention_maps are attached and detached.
They both were created in GPU and only embeddings is detached from the GPU to the CPU. So, I made the following change:
Detached them to the CPU, and made both into a list.
for i, a in enumerate(attention_mask.detach().cpu().tolist()):
embeddings[i] = embeddings[i][:, a == 1]
`
It threw the following error:
File "/home/randd/anaconda3/envs/igfold2/lib/python3.10/site-packages/antiberty/AntiBERTyRunner.py", line 88, in embed
embeddings[i] = embeddings[i][:, a == 1]
TypeError: list indices must be integers or slices, not tuple
To understand the core problem, I wanted to understand embeddings and attention_maps. So,
print(f"embeddings: {embeddings} length:{embeddings.shape}")
print(f"attention_mask: {attention_mask.detach().cpu()} length:{attention_mask.shape}")
embeddings = embeddings.detach().cpu().tolist()
for i, a in enumerate(attention_mask.detach().cpu().tolist()):
embeddings[i] = embeddings[i][:, a == 1]
I made this change:
`
# gather embeddings
embeddings = outputs.hidden_states
embeddings = torch.stack(embeddings, dim=1)
print(f"embeddings: {embeddings} length:{embeddings.shape}")
print(f"attention_mask: {attention_mask.detach().cpu()} length:{attention_mask.shape}")
embeddings = embeddings.detach().cpu()
for i, a in enumerate(attention_mask.detach().cpu()):
embeddings[i] = embeddings[i][:, a == 1]
`
So, finally, I tried to replace them as tensors and tried to replace, but it obviously threw tensor dimensions mismatch error:
File "/home/randd/anaconda3/envs/igfold2/lib/python3.10/site-packages/antiberty/AntiBERTyRunner.py", line 88, in embed
embeddings[i] = embeddings[i][:, a == 1]
RuntimeError: The expanded size of the tensor (120) must match the existing size (109) at non-singleton dimension 1. Target sizes: [9, 120, 512]. Tensor sizes: [9, 109, 512]
Because embeddings size is: [2, 9, 120, 512].
Whereas attention_mask size is: [2, 120].
What is the end goal of the following snippet? Why does this throw an error? Please help me resolv this.
The text was updated successfully, but these errors were encountered:
Hey there,
I attempted to re-run the new v3.0.x of
IGFold
withopenmm
on my system last night. After updating and upgrading the packages, I tried to run the notebook, and I found the following error being thrown from the scriptAntiBERTy.py
.To resolve this, I checked which devices the variables
embeddings
andattention_maps
are attached and detached.They both were created in GPU and only
embeddings
is detached from the GPU to the CPU. So, I made the following change:`
# gather embeddings
embeddings = outputs.hidden_states
embeddings = torch.stack(embeddings, dim=1)
embeddings = embeddings.detach().cpu().tolist()
`
It threw the following error:
To understand the core problem, I wanted to understand
embeddings
andattention_maps
. So,`
# gather embeddings
embeddings = outputs.hidden_states
embeddings = torch.stack(embeddings, dim=1)
`
Details
embeddings: tensor([[[[ 2.8550e-01, -9.1305e-01, -3.2084e-01, ..., -2.6094e-01, -1.1316e-01, 6.2532e-02], [ 1.2959e-01, -2.3578e-01, -9.5074e-01, ..., -3.4716e-01, 3.9048e-01, -7.9039e-01], [-1.1861e-01, -8.5111e-01, 1.7778e-01, ..., -6.4417e-01, -1.6268e-01, -7.4019e-01], ..., [ 1.4825e+00, 1.0562e+00, -5.5296e-01, ..., 4.6048e-02, -5.8749e-01, 3.5935e-01], [ 1.1087e+00, 8.3452e-01, -4.6560e-01, ..., -6.5979e-01, 7.0711e-02, 1.3638e+00], [ 7.1583e-01, 8.4463e-01, 7.4550e-01, ..., 5.5646e-01, -6.0864e-01, 1.2408e+00]], [[ 8.2428e-01, -6.0705e-01, -9.0634e-01, ..., -4.5286e-02, -6.8834e-02, 4.4105e-01], [ 7.2001e-01, 6.3411e-01, -1.0107e+00, ..., -4.3047e-01, -5.7251e-01, -6.7011e-01], [ 4.6859e-01, -8.5742e-01, -1.5053e-02, ..., -2.8734e-01, -1.0233e+00, -3.6219e-01], ..., [ 1.0764e+00, 1.1695e+00, -6.8277e-01, ..., 2.8122e-02, -9.8832e-01, 1.4659e-01], [ 8.8104e-01, 1.1147e+00, -7.1646e-01, ..., -1.0783e-01, -7.9473e-01, 1.0538e+00], [ 6.3558e-01, 9.0190e-01, 4.0055e-01, ..., 3.1800e-01, -1.0868e+00, 9.7025e-01]], [[ 9.6156e-01, -9.6647e-01, -1.4004e+00, ..., -6.3557e-01, 4.1958e-01, -1.8568e-01], [ 3.0844e-01, 1.0339e+00, -1.5486e+00, ..., 2.1584e-01, -3.8619e-01, -8.9405e-01], [ 4.5382e-01, -3.8623e-01, 1.7961e-01, ..., -1.4155e-01, -1.1880e+00, -5.4827e-01], ..., [ 9.9114e-01, 5.7983e-01, -2.9399e-01, ..., -4.6010e-01, -6.7488e-01, -6.2466e-01], [ 7.5153e-01, 4.8691e-01, -5.4032e-01, ..., 2.6127e-01, -1.0607e+00, 7.8277e-01], [ 8.5168e-01, 4.9293e-01, -2.6708e-01, ..., 3.8526e-01, -1.1824e+00, 8.5203e-01]], ..., [[ 1.2814e+00, -4.3900e-01, -3.2785e-01, ..., -1.2414e+00, -6.3775e-01, -1.3176e+00], [ 3.0157e-01, 1.6172e+00, -1.3343e+00, ..., -1.2285e+00, -5.5167e-01, -1.8283e+00], [ 3.5919e-01, -2.6482e-01, -1.0645e+00, ..., -4.3375e-02, -3.2065e-01, -9.8966e-01], ..., [ 1.8181e+00, -1.6646e-01, -1.2666e+00, ..., 1.0637e+00, 1.4646e+00, -1.6298e+00], [ 1.0763e+00, -5.1882e-01, -6.8510e-01, ..., 1.3576e+00, 1.2688e+00, -1.4657e+00], [ 1.7986e+00, -7.4009e-02, -1.2577e+00, ..., 1.0660e+00, 1.4812e+00, -1.4051e+00]], [[ 1.2025e+00, -5.5392e-01, -1.0193e+00, ..., -8.1229e-01, -2.3811e-01, -4.7275e-01], [ 6.5538e-01, 1.1917e+00, -5.2697e-01, ..., -8.7801e-01, -7.4126e-01, -1.9144e+00], [ 2.5875e-01, -7.9232e-01, -8.5029e-01, ..., 6.4324e-02, -8.0997e-02, -1.9687e+00], ..., [ 1.4830e+00, -1.9244e-01, -6.8066e-01, ..., 2.1269e-01, 1.0873e+00, -1.3896e+00], [ 5.3997e-01, -1.4820e-01, -2.0483e-01, ..., 7.3495e-01, 8.6871e-01, -1.3526e+00], [ 1.6477e+00, -5.3092e-02, -7.1276e-01, ..., 3.2879e-01, 1.1778e+00, -9.6469e-01]], [[ 1.5494e+00, -9.5254e-01, -8.3588e-01, ..., -4.2762e-01, 6.2013e-01, 1.0120e-02], [ 4.4904e-02, 7.8505e-01, -1.0384e+00, ..., -7.8334e-02, -1.7476e-01, -1.6311e+00], [ 1.7894e-01, -9.9010e-01, -1.1633e+00, ..., 6.0122e-01, -1.0615e-01, -1.5358e+00], ..., [ 1.2771e+00, -1.8352e-01, -1.4466e+00, ..., -6.2605e-01, 1.2011e+00, -2.0856e+00], [ 5.6284e-01, -9.5801e-02, -1.1209e+00, ..., -5.1828e-01, 4.9442e-01, -1.5956e+00], [ 1.1071e+00, 3.0336e-01, -1.8048e+00, ..., -3.8724e-01, 1.1147e+00, -1.5361e+00]]], [[[ 2.8550e-01, -9.1305e-01, -3.2084e-01, ..., -2.6094e-01, -1.1316e-01, 6.2532e-02], [ 5.0035e-01, 5.4549e-01, 3.4283e-01, ..., -3.0739e-01, -4.9315e-01, -1.1373e+00], [-4.0275e-01, 2.1443e-02, 2.0123e-01, ..., -2.4489e-01, 8.3188e-01, -6.5645e-01], ..., [ 4.0514e-01, -3.2213e-01, 3.7994e-01, ..., 1.2408e-01, 6.3095e-01, 9.2037e-03], [ 1.9132e-01, -4.4131e-01, 4.2406e-01, ..., -2.6266e-01, 9.8391e-01, 5.5734e-01], [ 4.0278e-01, -4.9534e-02, 3.3810e-01, ..., 1.4354e-01, 8.4249e-01, 4.0723e-01]], [[ 6.2418e-02, -6.1317e-01, -1.5439e+00, ..., -3.1803e-01, -2.0041e-01, 4.4618e-01], [-6.7039e-02, 1.2193e+00, -5.0822e-01, ..., 3.5469e-01, 2.6262e-02, -7.7125e-01], [-9.5805e-01, 1.4456e-01, -1.8127e-01, ..., 3.6328e-01, 1.4936e+00, -4.5747e-02], ..., [ 6.8287e-02, 8.2539e-01, 5.4192e-02, ..., -1.1069e-01, 6.6216e-01, 7.4946e-01], [-1.9581e-01, 6.8329e-01, -2.6928e-01, ..., -7.0956e-01, 7.8344e-01, 1.4804e+00], [-4.1462e-02, 8.8683e-01, -5.2905e-01, ..., -2.5274e-01, 7.1604e-01, 1.2256e+00]], [[ 3.5130e-01, -1.5874e+00, -1.7016e+00, ..., 6.8850e-01, -5.8646e-01, 1.7784e-01], [ 1.1386e-01, 1.3657e+00, -8.2388e-01, ..., 4.7490e-01, 1.2626e+00, -3.1313e-01], [-1.1854e+00, -1.1600e-03, -7.3433e-01, ..., 7.6139e-01, 1.6375e+00, 1.8955e-01], ..., [-6.9969e-01, 1.1508e+00, 7.0558e-02, ..., 4.2873e-01, 5.6067e-01, 5.2250e-01], [-5.0788e-01, 6.6331e-01, -6.1032e-01, ..., -2.3532e-01, 8.2221e-01, 7.9204e-01], [-2.6820e-01, 8.5643e-01, -4.7090e-01, ..., -2.8118e-01, 6.5296e-01, 6.8785e-01]], ..., [[-9.0217e-02, -2.6741e-01, -1.0890e+00, ..., 1.8798e+00, -3.2522e-03, -1.5653e-01], [-6.9740e-01, 1.4951e+00, -6.4886e-01, ..., -1.3687e-01, 1.4956e+00, 3.7487e-01], [-1.6580e-01, 1.1264e-01, -7.6442e-01, ..., 4.3402e-01, 1.9541e+00, 1.2029e+00], ..., [ 1.9953e-01, 2.6025e+00, -4.9651e-01, ..., 5.0344e-01, -1.2114e-02, 3.9688e-01], [-1.0917e+00, 1.2115e+00, 6.2053e-01, ..., 8.5435e-01, -4.5358e-02, 3.5120e-01], [ 6.1694e-01, 2.1130e+00, -1.1016e+00, ..., 2.8187e-01, 9.5419e-02, -3.5959e-01]], [[ 5.0400e-01, -5.3220e-01, -1.0173e+00, ..., 2.1676e+00, -3.6843e-01, -1.8500e-01], [-2.1364e-01, 9.2027e-01, -2.5382e-01, ..., 1.1757e-01, 9.4363e-01, 6.0816e-01], [-1.0163e-01, -3.2413e-02, -7.2567e-01, ..., 1.1070e+00, 1.3306e+00, 1.0462e+00], ..., [ 3.0022e-01, 2.6991e+00, -4.7573e-01, ..., -1.0428e-01, -7.8721e-02, 1.1695e+00], [-1.0961e+00, 6.7808e-01, -3.0792e-01, ..., 7.1660e-01, -2.0900e-01, 4.5738e-01], [ 8.4948e-01, 1.9340e+00, -1.1624e+00, ..., -2.2008e-01, 4.5761e-01, 9.6474e-01]], [[-2.9150e-01, 4.8298e-01, -3.7572e-01, ..., 2.4827e+00, -1.9686e-01, 2.9108e-01], [-4.5003e-01, 4.0321e-01, -1.0218e+00, ..., -1.9378e-01, 5.3391e-01, 3.8499e-01], [-7.7064e-02, -5.0206e-01, -1.3377e+00, ..., 9.1953e-01, 5.2488e-01, 1.2372e-01], ..., [ 7.2962e-01, 1.8133e+00, 2.9414e-01, ..., 7.3038e-01, -2.0271e-01, 2.1481e+00], [-7.7066e-01, -1.0586e-01, -9.3787e-02, ..., 1.0239e+00, -2.1658e-01, 9.3203e-01], [ 1.0556e+00, 9.7592e-01, -1.2148e+00, ..., -4.7689e-02, -1.4709e-02, 2.9145e-01]]]], device='cuda:0') length:torch.Size([2, 9, 120, 512]) attention_mask: tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) length:torch.Size([2, 120])
I made this change:
`
# gather embeddings
embeddings = outputs.hidden_states
embeddings = torch.stack(embeddings, dim=1)
`
So, finally, I tried to replace them as tensors and tried to replace, but it obviously threw tensor dimensions mismatch error:
Because
embeddings
size is: [2, 9, 120, 512].Whereas
attention_mask
size is: [2, 120].What is the end goal of the following snippet? Why does this throw an error? Please help me resolv this.
The text was updated successfully, but these errors were encountered: