-
Notifications
You must be signed in to change notification settings - Fork 0
/
perform_tests.py
211 lines (173 loc) · 7.89 KB
/
perform_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 20 11:01:07 2019
@author: dipu
"""
import os
import glob
import json
from collections import defaultdict
from utils import extract_features, compute_iou
import _init_paths
from BoundingBox import BoundingBox
from BoundingBoxes import BoundingBoxes
from PIL import Image
import pickle
from scipy.spatial.distance import cdist
import numpy as np
from eval_metrics.get_overall_IOU import get_overall_IOU
from eval_metrics.get_overall_Classwise_IOU import get_overall_Classwise_IOU
from eval_metrics.get_overall_pix_acc import get_overall_pix_acc
data_dir = '/mnt/amber/scratch/Dipu/RICO/semantic_annotations/'
#def add_path(path):
# if path not in sys.path:
# sys.path.insert(0, path)
#
#currentPath = os.path.dirname(os.path.realpath(__file__))
## Add lib to PYTHONPATH
#libPath = os.path.join(currentPath, '..', '..', 'lib')
#add_path(libPath)
def main():
boundingBoxes = getBoundingBoxes()
models = ['model_CAE_emb2688', 'model_CAE_emb512', 'model_CAE2_OnlyConv_emb2912']
for model_name in models:
onlyGallery = True
feat_filename = 'features-' + model_name + '.p'
feat_filename = 'features-' + model_name + '.p'
features = pickle.load(open(feat_filename, "rb"))
q_feat = features["q_feat"]
q_fnames = features["q_fnames"]
g_feat = features["g_feat"]
g_fnames = features["g_fnames"]
if not(onlyGallery):
t_feat = features["t_feat"]
t_fnames = features["t_fnames"]
g_feat = np.vstack((g_feat,t_feat))
g_fnames = g_fnames + t_fnames
distances = cdist(q_feat, g_feat, metric= 'euclidean')
sort_inds = np.argsort(distances)
overallMeanIou, overallMeanWeightedIou, classIoU = get_overall_IOU(boundingBoxes,sort_inds,g_fnames,q_fnames)
overallMeanClassIou, overallMeanWeightedClassIou, classwiseClassIoU = get_overall_Classwise_IOU(boundingBoxes,sort_inds,g_fnames,q_fnames)
overallMeanAvgPixAcc, overallMeanWeightedPixAcc, classPixAcc = get_overall_pix_acc(boundingBoxes,sort_inds,g_fnames,q_fnames)
#
print('\n\IOU Values:')
print(model_name)
print('GAlleryOnly Flag:', onlyGallery)
print('The overallMeanIou = {:.3f} '.format(overallMeanIou))
print('The overallMeanWeightedIou = {:.3f}'.format(overallMeanWeightedIou))
print('The overallMeanClassIou = {:.3f})'.format(overallMeanClassIou))
print('The overallMeanWeightedClassIou = {:.3f})'.format(overallMeanWeightedClassIou))
print('The overallMeanAvgPixAcc = {:.3f}'.format(overallMeanAvgPixAcc))
print('The overallMeanWeightedPixAcc = {:.3f} '.format(overallMeanWeightedPixAcc))
#Save results
savefile = model_name + '_results.p'
results = {'overallMeanIou': overallMeanIou, 'overallMeanWeightedIou': overallMeanWeightedIou, 'classIoU': classIoU, \
'overallMeanClassIou': overallMeanClassIou, 'overallMeanWeightedClassIou': overallMeanWeightedClassIou, 'classwiseClassIoU': classwiseClassIoU, \
'overallMeanAvgPixAcc': overallMeanAvgPixAcc, 'overallMeanWeightedPixAcc': overallMeanWeightedPixAcc, 'classPixAcc':classPixAcc \
}
pickle.dump(results, open(savefile, "wb"))
plot_classwiseResults(classIoU, model_name + 'classIoU' )
plot_classwiseResults(classIoU, model_name + 'classwiseClassIoU' )
plot_classwiseResults(classIoU, model_name + 'classPixAcc' )
#%% Preparing the dataset
def parse_ui_elements(sui):
"""
Parse the json file iteratively using recursion,, un winding all the nested chilfre
returns the dictionay of elements
"""
global counter
counter = 0
elements = defaultdict(dict)
def recurse(sui):
global counter
n_uis = len(sui['children'])
for i in range(n_uis):
[x1, y1, x2, y2] = sui['children'][i]['bounds']
elements[counter]['component_Label'] = sui['children'][i]['componentLabel']
elements[counter]['x'] = x1
elements[counter]['y'] = y1
elements[counter]['w'] = x2-x1
elements[counter]['h'] = y2-y1
elements[counter]['iconClass'] = sui['children'][i].get('iconClass')
elements[counter]['textButtonClass'] = sui['children'][i].get('textButtonClass')
counter +=1
if sui['children'][i].get('children') != None:
recurse(sui['children'][i])
recurse(sui)
return elements, counter
def getBoundingBoxes(data_dir = '/mnt/amber/scratch/Dipu/RICO/semantic_annotations/'):
allBoundingBoxes = BoundingBoxes()
files = glob.glob(data_dir+ "*.json")
for file in files:
imageName = os.path.split(file)[1]
imageName = imageName.replace(".json", "")
print(imageName)
with open(file, "r") as f:
sui = json.load(f) # sui = semantic ui annotation.
elements, count = parse_ui_elements(sui)
for i in range(count):
box = elements[i]
bb = BoundingBox(
imageName,
box['component_Label'],
box['x'],
box['y'],
box['w'],
box['h'],
iconClass=box['iconClass'],
textButtonClass=box['textButtonClass'])
allBoundingBoxes.addBoundingBox(bb)
# testBoundingBoxes(allBoundingBoxes)
return allBoundingBoxes
def testBoundingBoxes(boundingBoxes, samples = ['28970', '62918']):
#Visualize if every colored element is plotted or not.
from matplotlib import pyplot as plt
from PIL import Image
import matplotlib.patches as patches
samples = ['28970', '62918']
base_ui_path = '/mnt/amber/scratch/Dipu/RICO/semantic_annotations/'
base_im_path = '/mnt/amber/scratch/Dipu/RICO/combined/'
for sample in samples:
img = base_ui_path + sample + '.png'
img = Image.open(img).convert('RGB')
img2 = base_im_path + sample + '.jpg'
img2 = Image.open(img2).convert('RGB')
fig, ax = plt.subplots(1,2)
plt.setp(ax, xticklabels=[], yticklabels=[])
ax[0].imshow(img2)
ax[1].imshow(img)
bbs = boundingBoxes.getBoundingBoxesByImageName(sample)
for bb in bbs:
bb_cordinates = bb.getBoundingBox()
bb_class = bb.classId
# if bb_cordinates[2] < 0:
rect = patches.Rectangle((bb_cordinates[0], bb_cordinates[1]), bb_cordinates[2], bb_cordinates[3], linewidth=2, edgecolor='r', facecolor= 'none')
ax[1].add_patch(rect)
ax[1].text(bb_cordinates[0], bb_cordinates[1], bb_class, fontsize=8, color= 'r', verticalalignment='top')
plt.show()
def plot_classwiseResults(classwiseResult, name):
from matplotlib import pyplot as plt
import collections
D = classwiseResult
for k, v in D.items():
if D[k] == []:
D[k]= [0,0]
else:
D[k] = [np.mean(v), len(v)]
D = sorted(D.items(), key=lambda kv: kv[1][0], reverse=False)
D = collections.OrderedDict(D)
fig, ax = plt.subplots()
for i, (k,v) in enumerate(D.items()):
ax.text( v[0]+0.001, i+0.25 , '{:.2f} ({})'.format(v[0], v[1]), fontsize=10, fontweight='bold', color= 'b', verticalalignment='top')
print (i ,k ,v)
# fig.title(name)
fig.set_size_inches(7, 5)
ax.barh(range(len(D)), [x[0] for x in D.values()], align='center')
plt.yticks(range(len(D)), list(D.keys()), rotation='horizontal')
plt.subplots_adjust(bottom=0.3)
plt.tight_layout(h_pad=1)
plt.show()
plt.savefig('Results/Result_Figures/{}.png'.format(name), dpi = 500)
if __name__ == '__main__':
main()