forked from taoyds/test-suite-sql-eval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_classical.py
148 lines (119 loc) · 5.21 KB
/
evaluate_classical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
from typing import List, Dict, Any, Tuple
import pickle as pkl
import tqdm
from exec_eval import exec_on_db, result_eq
import os
from collections import defaultdict
import time
from multiprocessing import cpu_count, Pool, Manager
from itertools import repeat
NUM_PROCESSES = cpu_count() // 3
if NUM_PROCESSES == 0:
NUM_PROCESSES = 1
MULTIPLICATIVE_OVERHEAD = 3
ADDITIVE_OVERHEAD = 30
GOLD_TIMEOUT = 100
cache_path = 'cache.pkl'
m = Manager()
cache = m.dict()
def load_predictions(f_path: str) -> List[str]:
preds = []
with open(f_path, 'r') as in_file:
for l in in_file:
preds.append(l.strip())
return preds
def acc(l, idxes=None):
if idxes is None:
idxes = [_ for _ in range(len(l))]
c = 0
for idx in idxes:
if l[idx]:
c += 1
return float(c) / len(idxes)
# the input is a tuple of gold_dict, model prediction and whether to use cache
# and teh output is whether the model prediction passes the entire test suite
def judge(args: Tuple[Dict[str, Any], str, bool]) -> bool:
gold_dict, pred, use_cache = args
testsuite_paths = gold_dict['testsuite']
gold_query = gold_dict['query']
order_matters = 'order by' in gold_query.lower()
db_path = gold_dict['db_path']
# if already computed sometime before
# and cache allowed, directly return the result
k = (db_path, gold_query, pred)
if use_cache and k in cache:
return cache[k]
pass_all_testcase = True
for testcase_path in testsuite_paths:
start = time.time()
flg, gold_result = exec_on_db(testcase_path, gold_query, timeout=GOLD_TIMEOUT)
duration = time.time() - start
timeout = ADDITIVE_OVERHEAD + MULTIPLICATIVE_OVERHEAD * duration
if flg != 'result':
print('Warning: executing gold query results in an exception')
continue
flg, pred_result = exec_on_db(testcase_path, pred, timeout=int(timeout))
if flg != 'result':
pass_all_testcase = False
break
if not result_eq(gold_result, pred_result, order_matters):
pass_all_testcase = False
break
# save the results in the cache
if use_cache:
cache[k] = pass_all_testcase
return pass_all_testcase
# cache is a dictionary
# the key is a ternary tuple (empty_database_path, SQL1, SQL2)
# the value is whether SQL1 and SQL2 are equivalent, judged by the test suites
def load_cache() -> Dict[Tuple[str, str, str], bool]:
if os.path.exists(cache_path):
d = m.dict(pkl.load(open(cache_path, 'rb')))
for k, v in d.items():
cache[k] = v
return cache
# dump the cache
def save_cache():
pkl.dump(dict(cache), open(cache_path, 'wb'))
def main(preds: List[str], gold_file: str = "classical_test.pkl", verbose: bool = True,
num_processes: int = NUM_PROCESSES, subset: str = 'full', use_cache: bool = True) -> List[bool]:
gold_dicts = pkl.load(open(gold_file, 'rb'))
if subset != 'full':
gold_dicts = [d for d in gold_dicts if d['db_path'] == 'database/{db_id}/{db_id}.sqlite'.format(db_id=subset)]
assert len(gold_dicts) == len(preds), 'number of gold and prediction should be equal'
group_name2idxes = defaultdict(list)
for idx, gold_dict in enumerate(gold_dicts):
group_name2idxes[gold_dict['db_id']].append(idx)
with Pool(num_processes) as pool:
result = list(tqdm.tqdm(pool.imap(judge, zip(gold_dicts, preds, repeat(use_cache, len(preds)))), total=len(gold_dicts)))
if verbose:
print('overall accuracy: ', acc(result))
for group, idxes in group_name2idxes.items():
print('accuracy for ', group, acc(result, idxes))
return result
if __name__ == "__main__":
start = time.time()
parser = argparse.ArgumentParser()
parser.add_argument('--gold', dest='gold', type=str, default='classical_test.pkl',
help="the path to the predicted queries")
parser.add_argument('--pred', dest='pred', type=str, help="the path to the predicted queries")
parser.add_argument('--out_file', type=str, required=True, help='the output file path')
parser.add_argument('--num_processes', default=NUM_PROCESSES, help='number of processes to use')
parser.add_argument('--subset', default='full', choices=('atis', 'advising', 'academic', 'imdb', 'restaurants', 'geography', 'scholar', 'yelp', 'full'),
help='which subset to evaluate on.')
parser.add_argument('--disable_cache', default=False, action='store_true',
help='whether to directly apply previously computed result and cache the current results. '
'use this flag to disable caching.')
args = parser.parse_args()
preds = load_predictions(args.pred)
assert not os.path.exists(args.out_file), 'output file path %s already exists' % args.out_file
use_cache = not args.disable_cache
if use_cache:
load_cache()
result = main(preds=preds, gold_file=args.gold, verbose=True, num_processes=args.num_processes,
subset=args.subset, use_cache=use_cache)
pkl.dump(result, open(args.out_file, 'wb'))
print('total time used: ', time.time() - start)
if use_cache:
save_cache()