forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spatial_transformer.py
203 lines (174 loc) · 7.73 KB
/
spatial_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf
def transformer(U, theta, out_size, name='SpatialTransformer', **kwargs):
"""Spatial Transformer Layer
Implements a spatial transformer layer as described in [1]_.
Based on [2]_ and edited by David Dao for Tensorflow.
Parameters
----------
U : float
The output of a convolutional net should have the
shape [num_batch, height, width, num_channels].
theta: float
The output of the
localisation network should be [num_batch, 6].
out_size: tuple of two ints
The size of the output of the network (height, width)
References
----------
.. [1] Spatial Transformer Networks
Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu
Submitted on 5 Jun 2015
.. [2] https://github.com/skaae/transformer_network/blob/master/transformerlayer.py
Notes
-----
To initialize the network to the identity transform init
``theta`` to :
identity = np.array([[1., 0., 0.],
[0., 1., 0.]])
identity = identity.flatten()
theta = tf.Variable(initial_value=identity)
"""
def _repeat(x, n_repeats):
with tf.variable_scope('_repeat'):
rep = tf.transpose(
tf.expand_dims(tf.ones(shape=tf.pack([n_repeats, ])), 1), [1, 0])
rep = tf.cast(rep, 'int32')
x = tf.matmul(tf.reshape(x, (-1, 1)), rep)
return tf.reshape(x, [-1])
def _interpolate(im, x, y, out_size):
with tf.variable_scope('_interpolate'):
# constants
num_batch = tf.shape(im)[0]
height = tf.shape(im)[1]
width = tf.shape(im)[2]
channels = tf.shape(im)[3]
x = tf.cast(x, 'float32')
y = tf.cast(y, 'float32')
height_f = tf.cast(height, 'float32')
width_f = tf.cast(width, 'float32')
out_height = out_size[0]
out_width = out_size[1]
zero = tf.zeros([], dtype='int32')
max_y = tf.cast(tf.shape(im)[1] - 1, 'int32')
max_x = tf.cast(tf.shape(im)[2] - 1, 'int32')
# scale indices from [-1, 1] to [0, width/height]
x = (x + 1.0)*(width_f) / 2.0
y = (y + 1.0)*(height_f) / 2.0
# do sampling
x0 = tf.cast(tf.floor(x), 'int32')
x1 = x0 + 1
y0 = tf.cast(tf.floor(y), 'int32')
y1 = y0 + 1
x0 = tf.clip_by_value(x0, zero, max_x)
x1 = tf.clip_by_value(x1, zero, max_x)
y0 = tf.clip_by_value(y0, zero, max_y)
y1 = tf.clip_by_value(y1, zero, max_y)
dim2 = width
dim1 = width*height
base = _repeat(tf.range(num_batch)*dim1, out_height*out_width)
base_y0 = base + y0*dim2
base_y1 = base + y1*dim2
idx_a = base_y0 + x0
idx_b = base_y1 + x0
idx_c = base_y0 + x1
idx_d = base_y1 + x1
# use indices to lookup pixels in the flat image and restore
# channels dim
im_flat = tf.reshape(im, tf.pack([-1, channels]))
im_flat = tf.cast(im_flat, 'float32')
Ia = tf.gather(im_flat, idx_a)
Ib = tf.gather(im_flat, idx_b)
Ic = tf.gather(im_flat, idx_c)
Id = tf.gather(im_flat, idx_d)
# and finally calculate interpolated values
x0_f = tf.cast(x0, 'float32')
x1_f = tf.cast(x1, 'float32')
y0_f = tf.cast(y0, 'float32')
y1_f = tf.cast(y1, 'float32')
wa = tf.expand_dims(((x1_f-x) * (y1_f-y)), 1)
wb = tf.expand_dims(((x1_f-x) * (y-y0_f)), 1)
wc = tf.expand_dims(((x-x0_f) * (y1_f-y)), 1)
wd = tf.expand_dims(((x-x0_f) * (y-y0_f)), 1)
output = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id])
return output
def _meshgrid(height, width):
with tf.variable_scope('_meshgrid'):
# This should be equivalent to:
# x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
# np.linspace(-1, 1, height))
# ones = np.ones(np.prod(x_t.shape))
# grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
x_t = tf.matmul(tf.ones(shape=tf.pack([height, 1])),
tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0]))
y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1),
tf.ones(shape=tf.pack([1, width])))
x_t_flat = tf.reshape(x_t, (1, -1))
y_t_flat = tf.reshape(y_t, (1, -1))
ones = tf.ones_like(x_t_flat)
grid = tf.concat(0, [x_t_flat, y_t_flat, ones])
return grid
def _transform(theta, input_dim, out_size):
with tf.variable_scope('_transform'):
num_batch = tf.shape(input_dim)[0]
height = tf.shape(input_dim)[1]
width = tf.shape(input_dim)[2]
num_channels = tf.shape(input_dim)[3]
theta = tf.reshape(theta, (-1, 2, 3))
theta = tf.cast(theta, 'float32')
# grid of (x_t, y_t, 1), eq (1) in ref [1]
height_f = tf.cast(height, 'float32')
width_f = tf.cast(width, 'float32')
out_height = out_size[0]
out_width = out_size[1]
grid = _meshgrid(out_height, out_width)
grid = tf.expand_dims(grid, 0)
grid = tf.reshape(grid, [-1])
grid = tf.tile(grid, tf.pack([num_batch]))
grid = tf.reshape(grid, tf.pack([num_batch, 3, -1]))
# Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
T_g = tf.batch_matmul(theta, grid)
x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1])
y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1])
x_s_flat = tf.reshape(x_s, [-1])
y_s_flat = tf.reshape(y_s, [-1])
input_transformed = _interpolate(
input_dim, x_s_flat, y_s_flat,
out_size)
output = tf.reshape(
input_transformed, tf.pack([num_batch, out_height, out_width, num_channels]))
return output
with tf.variable_scope(name):
output = _transform(theta, U, out_size)
return output
def batch_transformer(U, thetas, out_size, name='BatchSpatialTransformer'):
"""Batch Spatial Transformer Layer
Parameters
----------
U : float
tensor of inputs [num_batch,height,width,num_channels]
thetas : float
a set of transformations for each input [num_batch,num_transforms,6]
out_size : int
the size of the output [out_height,out_width]
Returns: float
Tensor of size [num_batch*num_transforms,out_height,out_width,num_channels]
"""
with tf.variable_scope(name):
num_batch, num_transforms = map(int, thetas.get_shape().as_list()[:2])
indices = [[i]*num_transforms for i in xrange(num_batch)]
input_repeated = tf.gather(U, tf.reshape(indices, [-1]))
return transformer(input_repeated, thetas, out_size)