forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_programmer.py
executable file
·237 lines (224 loc) · 9.47 KB
/
neural_programmer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of the Neural Programmer model described in https://openreview.net/pdf?id=ry2YOrcge
This file calls functions to load & pre-process data, construct the TF graph
and performs training or evaluation as specified by the flag evaluator_job
Author: aneelakantan (Arvind Neelakantan)
"""
import time
from random import Random
import numpy as np
import tensorflow as tf
import model
import wiki_data
import parameters
import data_utils
tf.flags.DEFINE_integer("train_steps", 100001, "Number of steps to train")
tf.flags.DEFINE_integer("eval_cycle", 500,
"Evaluate model at every eval_cycle steps")
tf.flags.DEFINE_integer("max_elements", 100,
"maximum rows that are considered for processing")
tf.flags.DEFINE_integer(
"max_number_cols", 15,
"maximum number columns that are considered for processing")
tf.flags.DEFINE_integer(
"max_word_cols", 25,
"maximum number columns that are considered for processing")
tf.flags.DEFINE_integer("question_length", 62, "maximum question length")
tf.flags.DEFINE_integer("max_entry_length", 1, "")
tf.flags.DEFINE_integer("max_passes", 4, "number of operation passes")
tf.flags.DEFINE_integer("embedding_dims", 256, "")
tf.flags.DEFINE_integer("batch_size", 20, "")
tf.flags.DEFINE_float("clip_gradients", 1.0, "")
tf.flags.DEFINE_float("eps", 1e-6, "")
tf.flags.DEFINE_float("param_init", 0.1, "")
tf.flags.DEFINE_float("learning_rate", 0.001, "")
tf.flags.DEFINE_float("l2_regularizer", 0.0001, "")
tf.flags.DEFINE_float("print_cost", 50.0,
"weighting factor in the objective function")
tf.flags.DEFINE_string("job_id", "temp", """job id""")
tf.flags.DEFINE_string("output_dir", "../model/",
"""output_dir""")
tf.flags.DEFINE_string("data_dir", "../data/",
"""data_dir""")
tf.flags.DEFINE_integer("write_every", 500, "wrtie every N")
tf.flags.DEFINE_integer("param_seed", 150, "")
tf.flags.DEFINE_integer("python_seed", 200, "")
tf.flags.DEFINE_float("dropout", 0.8, "dropout keep probability")
tf.flags.DEFINE_float("rnn_dropout", 0.9,
"dropout keep probability for rnn connections")
tf.flags.DEFINE_float("pad_int", -20000.0,
"number columns are padded with pad_int")
tf.flags.DEFINE_string("data_type", "double", "float or double")
tf.flags.DEFINE_float("word_dropout_prob", 0.9, "word dropout keep prob")
tf.flags.DEFINE_integer("word_cutoff", 10, "")
tf.flags.DEFINE_integer("vocab_size", 10800, "")
tf.flags.DEFINE_boolean("evaluator_job", False,
"wehther to run as trainer/evaluator")
tf.flags.DEFINE_float(
"bad_number_pre_process", -200000.0,
"number that is added to a corrupted table entry in a number column")
tf.flags.DEFINE_float("max_math_error", 3.0,
"max square loss error that is considered")
tf.flags.DEFINE_float("soft_min_value", 5.0, "")
FLAGS = tf.flags.FLAGS
class Utility:
#holds FLAGS and other variables that are used in different files
def __init__(self):
global FLAGS
self.FLAGS = FLAGS
self.unk_token = "UNK"
self.entry_match_token = "entry_match"
self.column_match_token = "column_match"
self.dummy_token = "dummy_token"
self.tf_data_type = {}
self.tf_data_type["double"] = tf.float64
self.tf_data_type["float"] = tf.float32
self.np_data_type = {}
self.np_data_type["double"] = np.float64
self.np_data_type["float"] = np.float32
self.operations_set = ["count"] + [
"prev", "next", "first_rs", "last_rs", "group_by_max", "greater",
"lesser", "geq", "leq", "max", "min", "word-match"
] + ["reset_select"] + ["print"]
self.word_ids = {}
self.reverse_word_ids = {}
self.word_count = {}
self.random = Random(FLAGS.python_seed)
def evaluate(sess, data, batch_size, graph, i):
#computes accuracy
num_examples = 0.0
gc = 0.0
for j in range(0, len(data) - batch_size + 1, batch_size):
[ct] = sess.run([graph.final_correct],
feed_dict=data_utils.generate_feed_dict(data, j, batch_size,
graph))
gc += ct * batch_size
num_examples += batch_size
print "dev set accuracy after ", i, " : ", gc / num_examples
print num_examples, len(data)
print "--------"
def Train(graph, utility, batch_size, train_data, sess, model_dir,
saver):
#performs training
curr = 0
train_set_loss = 0.0
utility.random.shuffle(train_data)
start = time.time()
for i in range(utility.FLAGS.train_steps):
curr_step = i
if (i > 0 and i % FLAGS.write_every == 0):
model_file = model_dir + "/model_" + str(i)
saver.save(sess, model_file)
if curr + batch_size >= len(train_data):
curr = 0
utility.random.shuffle(train_data)
step, cost_value = sess.run(
[graph.step, graph.total_cost],
feed_dict=data_utils.generate_feed_dict(
train_data, curr, batch_size, graph, train=True, utility=utility))
curr = curr + batch_size
train_set_loss += cost_value
if (i > 0 and i % FLAGS.eval_cycle == 0):
end = time.time()
time_taken = end - start
print "step ", i, " ", time_taken, " seconds "
start = end
print " printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle
train_set_loss = 0.0
def master(train_data, dev_data, utility):
#creates TF graph and calls trainer or evaluator
batch_size = utility.FLAGS.batch_size
model_dir = utility.FLAGS.output_dir + "/model" + utility.FLAGS.job_id + "/"
#create all paramters of the model
param_class = parameters.Parameters(utility)
params, global_step, init = param_class.parameters(utility)
key = "test" if (FLAGS.evaluator_job) else "train"
graph = model.Graph(utility, batch_size, utility.FLAGS.max_passes, mode=key)
graph.create_graph(params, global_step)
prev_dev_error = 0.0
final_loss = 0.0
final_accuracy = 0.0
#start session
with tf.Session() as sess:
sess.run(init.name)
sess.run(graph.init_op.name)
to_save = params.copy()
saver = tf.train.Saver(to_save, max_to_keep=500)
if (FLAGS.evaluator_job):
while True:
selected_models = {}
file_list = tf.gfile.ListDirectory(model_dir)
for model_file in file_list:
if ("checkpoint" in model_file or "index" in model_file or
"meta" in model_file):
continue
if ("data" in model_file):
model_file = model_file.split(".")[0]
model_step = int(
model_file.split("_")[len(model_file.split("_")) - 1])
selected_models[model_step] = model_file
file_list = sorted(selected_models.items(), key=lambda x: x[0])
if (len(file_list) > 0):
file_list = file_list[0:len(file_list) - 1]
print "list of models: ", file_list
for model_file in file_list:
model_file = model_file[1]
print "restoring: ", model_file
saver.restore(sess, model_dir + "/" + model_file)
model_step = int(
model_file.split("_")[len(model_file.split("_")) - 1])
print "evaluating on dev ", model_file, model_step
evaluate(sess, dev_data, batch_size, graph, model_step)
else:
ckpt = tf.train.get_checkpoint_state(model_dir)
print "model dir: ", model_dir
if (not (tf.gfile.IsDirectory(utility.FLAGS.output_dir))):
print "create dir: ", utility.FLAGS.output_dir
tf.gfile.MkDir(utility.FLAGS.output_dir)
if (not (tf.gfile.IsDirectory(model_dir))):
print "create dir: ", model_dir
tf.gfile.MkDir(model_dir)
Train(graph, utility, batch_size, train_data, sess, model_dir,
saver)
def main(args):
utility = Utility()
train_name = "random-split-1-train.examples"
dev_name = "random-split-1-dev.examples"
test_name = "pristine-unseen-tables.examples"
#load data
dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir)
train_data, dev_data, test_data = dat.load()
utility.words = []
utility.word_ids = {}
utility.reverse_word_ids = {}
#construct vocabulary
data_utils.construct_vocab(train_data, utility)
data_utils.construct_vocab(dev_data, utility, True)
data_utils.construct_vocab(test_data, utility, True)
data_utils.add_special_words(utility)
data_utils.perform_word_cutoff(utility)
#convert data to int format and pad the inputs
train_data = data_utils.complete_wiki_processing(train_data, utility, True)
dev_data = data_utils.complete_wiki_processing(dev_data, utility, False)
test_data = data_utils.complete_wiki_processing(test_data, utility, False)
print "# train examples ", len(train_data)
print "# dev examples ", len(dev_data)
print "# test examples ", len(test_data)
print "running open source"
#construct TF graph and train or evaluate
master(train_data, dev_data, utility)
if __name__ == "__main__":
tf.app.run()