-
Notifications
You must be signed in to change notification settings - Fork 0
/
Demo_bicubic_degradation_SRMDNF.m
173 lines (130 loc) · 6.18 KB
/
Demo_bicubic_degradation_SRMDNF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
%==========================================================================
% This is the testing code of SRMDNF for the widely-used <bicubic degradation>.
% For bicubic degradation, the basic setting is:
% 1. the blur kernel is delta kernel; "kernel = fspecial('gaussian',15,0.2)".
% 2. the downsampler is fixed to bicubic downsampler. You can either
% train a new model with direct downsamper or use the estimated
% kernel k_b under direct downsampler.
% 3. there are three SRMDNF models, "SRMDNFx2.mat" for scale factor 2, "SRMDNFx3.mat"
% for scale factor 3, and "SRMDNFx4.mat" for scale factor 4.
%==========================================================================
% The basic idea of SRMD is to learn a CNN to infer the MAP of general SISR, i.e.,
% solve x^ = arg min_x 1/2 ||(kx)\downarrow_s - y||^2 + lamda \Phi(x)
% via x^ = CNN(y,k;\Theta) or HR^ = CNN(LR,kernel;\Theta).
%
% There involves two important factors, i.e., blur kernel (k; kernel), in SRMDNF.
%
% For more information, please refer to the following paper.
% @article{zhang2017learningsrmd,
% title={Learning a Single Convolutional Super-Resolution Network for Multiple Degradations},
% author={Kai, Zhang and Wangmeng, Zuo and Lei, Zhang},
% year={2017},
% }
%
% If you have any question, please feel free to contact with <Kai Zhang ([email protected])>.
%
% This code is for research purpose only.
%
% by Kai Zhang (Nov, 2017)
%==========================================================================
% clear; clc;
format compact;
addpath('utilities');
imageSets = {'Set5','Set14','BSD100','Urban100'}; % testing dataset
%% select testing dataset, use GPU or not, ...
setTest = imageSets([1,2,3,4]); % select the datasets for each tasks
showResult = 0; % save restored images
pauseTime = 0;
useGPU = 1; % 1 or 0, true or false
method = 'SRMDNF';
folderTest = 'testsets';
folderResult = 'results';
if ~exist(folderResult,'file')
mkdir(folderResult);
end
%% scale factor (2, 3, 4)
sf = 4;
%% load model with scale factor sf
folderModel = 'models';
load(fullfile(folderModel,['SRMDNFx',int2str(sf),'.mat']));
%net.layers = net.layers(1:end-1);
net = vl_simplenn_tidy(net);
if useGPU
net = vl_simplenn_move(net, 'gpu') ;
end
%% degradation parameter (kernel & noise level) setting
global degpar;
kernel = fspecial('gaussian',15, 0.2); % kernel is delta kernel. Note: the kernel size is fixed to 15X15.
degpar = single(net.meta.P*kernel(:));
tag = ['_',method,'_x',num2str(sf),'_bicubic'];
for n_set = 1 : numel(setTest)
%% search images
setTestCur = cell2mat(setTest(n_set));
disp('--------------------------------------------');
disp([' ----',setTestCur,'-----Super-Resolution-----']);
disp('--------------------------------------------');
folderTestCur = fullfile(folderTest,setTestCur);
ext = {'*.jpg','*.png','*.bmp'};
filepaths = [];
for i = 1 : length(ext)
filepaths = cat(1,filepaths,dir(fullfile(folderTestCur, ext{i})));
end
%% prepare results
eval(['PSNR_',setTestCur,'_x',num2str(sf),' = zeros(length(filepaths),1);']);
eval(['SSIM_',setTestCur,'_x',num2str(sf),' = zeros(length(filepaths),1);']);
folderResultCur = fullfile(folderResult, [setTestCur,tag]);
if ~exist(folderResultCur,'file')
mkdir(folderResultCur);
end
%% perform SISR
for i = 1 : length(filepaths)
HR = imread(fullfile(folderTestCur,filepaths(i).name));
C = size(HR,3);
if C == 1
HR = cat(3,HR,HR,HR);
end
[~,imageName,ext] = fileparts(filepaths(i).name);
HR = modcrop(HR, sf);
label_RGB = HR;
%% bicubic degradation
%blury_HR = imfilter(im2double(HR),double(kernel),'replicate'); % blur
LR = imresize(im2double(HR),1/sf,'bicubic'); % bicubic downsampling
input = im2single(LR);
%input = im2single(im2uint8(LR)); % another widely-used setting
%tic
if useGPU
input = gpuArray(input);
end
res = vl_srmd(net, input,[],[],'conserveMemory',true,'mode','test','cudnn',true);
%res = vl_srmd_concise(net, input); % a concise version of "vl_srmd".
%res = vl_srmd_matlab(net, input); % you should also set "useGPU = 0;" and comment "net = vl_simplenn_tidy(net);"
output_RGB = gather(res(end).x);
%toc;
if C == 1
label = mean(im2double(HR),3);
output = mean(output_RGB,3);
else
label = rgb2ycbcr(im2double(HR));
output = rgb2ycbcr(double(output_RGB));
label = label(:,:,1);
output = output(:,:,1);
end
%% calculate PSNR and SSIM
[PSNR_Cur,SSIM_Cur] = Cal_PSNRSSIM(label*255,output*255,sf,sf); %%% single
disp([setTestCur,' ',int2str(i),' ',num2str(PSNR_Cur,'%2.2f'),'dB',' ',filepaths(i).name]);
eval(['PSNR_',setTestCur,'_x',num2str(sf),'(',num2str(i),') = PSNR_Cur;']);
eval(['SSIM_',setTestCur,'_x',num2str(sf),'(',num2str(i),') = SSIM_Cur;']);
if showResult
imshow(cat(2,label_RGB,imresize(im2uint8(LR),sf),im2uint8(output_RGB)));
drawnow;
title(['SISR ',filepaths(i).name,' ',num2str(PSNR_Cur,'%2.2f'),'dB'],'FontSize',12)
pause(pauseTime)
imwrite(output_RGB,fullfile(folderResultCur,[imageName,'_x',int2str(sf),'_',int2str(PSNR_Cur*100),'.png']));% save results
end
end
disp(['Average PSNR is ',num2str(mean(eval(['PSNR_',setTestCur,'_x',num2str(sf)])),'%2.2f'),'dB']);
disp(['Average SSIM is ',num2str(mean(eval(['SSIM_',setTestCur,'_x',num2str(sf)])),'%2.4f')]);
%% save PSNR and SSIM results
save(fullfile(folderResultCur,['PSNR_',setTestCur,'_x',num2str(sf),'.mat']),['PSNR_',setTestCur,'_x',num2str(sf)]);
save(fullfile(folderResultCur,['SSIM_',setTestCur,'_x',num2str(sf),'.mat']),['SSIM_',setTestCur,'_x',num2str(sf)]);
end