forked from Sentdex/pygta5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test7.py
216 lines (169 loc) · 6.22 KB
/
test7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import numpy as np
import cv2
import time
from grabscreen import grab_screen
from numpy import ones,vstack
from numpy.linalg import lstsq
from directkeys import PressKey,ReleaseKey, W, A, S, D
from statistics import mean
import random
def roi(img, vertices):
#blank mask:
mask = np.zeros_like(img)
#filling pixels inside the polygon defined by "vertices" with the fill color
cv2.fillPoly(mask, vertices, 255)
#returning the image only where mask pixels are nonzero
masked = cv2.bitwise_and(img, mask)
return masked
def draw_lanes(img, lines, color=[0, 255, 255], thickness=3):
# if this fails, go with some default line
try:
# finds the maximum y value for a lane marker
# (since we cannot assume the horizon will always be at the same point.)
ys = []
for i in lines:
for ii in i:
ys += [ii[1],ii[3]]
min_y = min(ys)
max_y = 600
new_lines = []
line_dict = {}
for idx,i in enumerate(lines):
for xyxy in i:
# These four lines:
# modified from http://stackoverflow.com/questions/21565994/method-to-return-the-equation-of-a-straight-line-given-two-points
# Used to calculate the definition of a line, given two sets of coords.
x_coords = (xyxy[0],xyxy[2])
y_coords = (xyxy[1],xyxy[3])
A = vstack([x_coords,ones(len(x_coords))]).T
m, b = lstsq(A, y_coords)[0]
# Calculating our new, and improved, xs
x1 = (min_y-b) / m
x2 = (max_y-b) / m
line_dict[idx] = [m,b,[int(x1), min_y, int(x2), max_y]]
new_lines.append([int(x1), min_y, int(x2), max_y])
final_lanes = {}
for idx in line_dict:
final_lanes_copy = final_lanes.copy()
m = line_dict[idx][0]
b = line_dict[idx][1]
line = line_dict[idx][2]
if len(final_lanes) == 0:
final_lanes[m] = [ [m,b,line] ]
else:
found_copy = False
for other_ms in final_lanes_copy:
if not found_copy:
if abs(other_ms*1.2) > abs(m) > abs(other_ms*0.8):
if abs(final_lanes_copy[other_ms][0][1]*1.2) > abs(b) > abs(final_lanes_copy[other_ms][0][1]*0.8):
final_lanes[other_ms].append([m,b,line])
found_copy = True
break
else:
final_lanes[m] = [ [m,b,line] ]
line_counter = {}
for lanes in final_lanes:
line_counter[lanes] = len(final_lanes[lanes])
top_lanes = sorted(line_counter.items(), key=lambda item: item[1])[::-1][:2]
lane1_id = top_lanes[0][0]
lane2_id = top_lanes[1][0]
def average_lane(lane_data):
x1s = []
y1s = []
x2s = []
y2s = []
for data in lane_data:
x1s.append(data[2][0])
y1s.append(data[2][1])
x2s.append(data[2][2])
y2s.append(data[2][3])
return int(mean(x1s)), int(mean(y1s)), int(mean(x2s)), int(mean(y2s))
l1_x1, l1_y1, l1_x2, l1_y2 = average_lane(final_lanes[lane1_id])
l2_x1, l2_y1, l2_x2, l2_y2 = average_lane(final_lanes[lane2_id])
return [l1_x1, l1_y1, l1_x2, l1_y2], [l2_x1, l2_y1, l2_x2, l2_y2], lane1_id, lane2_id
except Exception as e:
print(str(e))
def process_img(image):
original_image = image
# edge detection
processed_img = cv2.Canny(image, threshold1 = 200, threshold2=300)
processed_img = cv2.GaussianBlur(processed_img,(5,5),0)
vertices = np.array([[10,500],[10,300],[300,200],[500,200],[800,300],[800,500],
], np.int32)
processed_img = roi(processed_img, [vertices])
# more info: http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html
# rho theta thresh min length, max gap:
lines = cv2.HoughLinesP(processed_img, 1, np.pi/180, 180, 20, 15)
m1 = 0
m2 = 0
try:
l1, l2, m1,m2 = draw_lanes(original_image,lines)
cv2.line(original_image, (l1[0], l1[1]), (l1[2], l1[3]), [0,255,0], 30)
cv2.line(original_image, (l2[0], l2[1]), (l2[2], l2[3]), [0,255,0], 30)
except Exception as e:
print(str(e))
pass
try:
for coords in lines:
coords = coords[0]
try:
cv2.line(processed_img, (coords[0], coords[1]), (coords[2], coords[3]), [255,0,0], 3)
except Exception as e:
print(str(e))
except Exception as e:
pass
return processed_img,original_image, m1, m2
def sleep():
time.sleep(sleep_duration)
def straight():
PressKey(W)
ReleaseKey(A)
ReleaseKey(D)
def straight():
PressKey(W)
ReleaseKey(A)
ReleaseKey(D)
ReleaseKey(S)
sleep()
def left():
if random.randrange(0,3) == 1:
PressKey(W)
else:
ReleaseKey(W)
PressKey(A)
ReleaseKey(S)
ReleaseKey(D)
#ReleaseKey(S)
sleep()
def right():
if random.randrange(0,3) == 1:
PressKey(W)
else:
ReleaseKey(W)
PressKey(D)
ReleaseKey(A)
ReleaseKey(S)
sleep()
for i in list(range(4))[::-1]:
print(i+1)
time.sleep(1)
last_time = time.time()
sleep_duration = 0
while True:
screen = grab_screen(region=(0,40,800,600+30))
print('Frame took {} seconds'.format(time.time()-last_time))
last_time = time.time()
new_screen,original_image, m1, m2 = process_img(screen)
#cv2.imshow('window', new_screen)
# cv2.imshow('window2',cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB))
print(m1, m2)
if m1 < 0 and m2 < 0:
right()
elif m1 > 0 and m2 > 0:
left()
else:
straight()
#cv2.imshow('window',cv2.cvtColor(screen, cv2.COLOR_BGR2RGB))
# if cv2.waitKey(25) & 0xFF == ord('q'):
# cv2.destroyAllWindows()
# break