From dd4a2f76547e3422d86ac62e1b1d1c53bcc679d5 Mon Sep 17 00:00:00 2001 From: Chandan Singh Date: Sat, 12 Sep 2020 23:12:59 -0700 Subject: [PATCH] remove all unnecessary files --- data/boston.csv | 507 ------------------ .../optimal_classification_tree/__init__.py | 2 - .../{pyoptree => }/example.py | 0 .../{pyoptree => }/localsearch.py | 0 .../{pyoptree => }/optree.py | 0 .../pyoptree/__init__.py | 0 .../{pyoptree => }/tree.py | 0 imodels/skrules/datasets/__init__.py | 3 - imodels/skrules/datasets/credit_data.py | 45 -- notebooks/1_model_based.ipynb | 6 +- readme.md | 2 +- 11 files changed, 4 insertions(+), 561 deletions(-) delete mode 100644 data/boston.csv rename imodels/optimal_classification_tree/{pyoptree => }/example.py (100%) rename imodels/optimal_classification_tree/{pyoptree => }/localsearch.py (100%) rename imodels/optimal_classification_tree/{pyoptree => }/optree.py (100%) delete mode 100644 imodels/optimal_classification_tree/pyoptree/__init__.py rename imodels/optimal_classification_tree/{pyoptree => }/tree.py (100%) delete mode 100644 imodels/skrules/datasets/__init__.py delete mode 100644 imodels/skrules/datasets/credit_data.py diff --git a/data/boston.csv b/data/boston.csv deleted file mode 100644 index 392edcaf..00000000 --- a/data/boston.csv +++ /dev/null @@ -1,507 +0,0 @@ -"","crim","zn","indus","chas","nox","rm","age","dis","rad","tax","ptratio","black","lstat","medv" -"1",0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,24 -"2",0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,21.6 -"3",0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17.8,392.83,4.03,34.7 -"4",0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18.7,394.63,2.94,33.4 -"5",0.06905,0,2.18,0,0.458,7.147,54.2,6.0622,3,222,18.7,396.9,5.33,36.2 -"6",0.02985,0,2.18,0,0.458,6.43,58.7,6.0622,3,222,18.7,394.12,5.21,28.7 -"7",0.08829,12.5,7.87,0,0.524,6.012,66.6,5.5605,5,311,15.2,395.6,12.43,22.9 -"8",0.14455,12.5,7.87,0,0.524,6.172,96.1,5.9505,5,311,15.2,396.9,19.15,27.1 -"9",0.21124,12.5,7.87,0,0.524,5.631,100,6.0821,5,311,15.2,386.63,29.93,16.5 -"10",0.17004,12.5,7.87,0,0.524,6.004,85.9,6.5921,5,311,15.2,386.71,17.1,18.9 -"11",0.22489,12.5,7.87,0,0.524,6.377,94.3,6.3467,5,311,15.2,392.52,20.45,15 -"12",0.11747,12.5,7.87,0,0.524,6.009,82.9,6.2267,5,311,15.2,396.9,13.27,18.9 -"13",0.09378,12.5,7.87,0,0.524,5.889,39,5.4509,5,311,15.2,390.5,15.71,21.7 -"14",0.62976,0,8.14,0,0.538,5.949,61.8,4.7075,4,307,21,396.9,8.26,20.4 -"15",0.63796,0,8.14,0,0.538,6.096,84.5,4.4619,4,307,21,380.02,10.26,18.2 -"16",0.62739,0,8.14,0,0.538,5.834,56.5,4.4986,4,307,21,395.62,8.47,19.9 -"17",1.05393,0,8.14,0,0.538,5.935,29.3,4.4986,4,307,21,386.85,6.58,23.1 -"18",0.7842,0,8.14,0,0.538,5.99,81.7,4.2579,4,307,21,386.75,14.67,17.5 -"19",0.80271,0,8.14,0,0.538,5.456,36.6,3.7965,4,307,21,288.99,11.69,20.2 -"20",0.7258,0,8.14,0,0.538,5.727,69.5,3.7965,4,307,21,390.95,11.28,18.2 -"21",1.25179,0,8.14,0,0.538,5.57,98.1,3.7979,4,307,21,376.57,21.02,13.6 -"22",0.85204,0,8.14,0,0.538,5.965,89.2,4.0123,4,307,21,392.53,13.83,19.6 -"23",1.23247,0,8.14,0,0.538,6.142,91.7,3.9769,4,307,21,396.9,18.72,15.2 -"24",0.98843,0,8.14,0,0.538,5.813,100,4.0952,4,307,21,394.54,19.88,14.5 -"25",0.75026,0,8.14,0,0.538,5.924,94.1,4.3996,4,307,21,394.33,16.3,15.6 -"26",0.84054,0,8.14,0,0.538,5.599,85.7,4.4546,4,307,21,303.42,16.51,13.9 -"27",0.67191,0,8.14,0,0.538,5.813,90.3,4.682,4,307,21,376.88,14.81,16.6 -"28",0.95577,0,8.14,0,0.538,6.047,88.8,4.4534,4,307,21,306.38,17.28,14.8 -"29",0.77299,0,8.14,0,0.538,6.495,94.4,4.4547,4,307,21,387.94,12.8,18.4 -"30",1.00245,0,8.14,0,0.538,6.674,87.3,4.239,4,307,21,380.23,11.98,21 -"31",1.13081,0,8.14,0,0.538,5.713,94.1,4.233,4,307,21,360.17,22.6,12.7 -"32",1.35472,0,8.14,0,0.538,6.072,100,4.175,4,307,21,376.73,13.04,14.5 -"33",1.38799,0,8.14,0,0.538,5.95,82,3.99,4,307,21,232.6,27.71,13.2 -"34",1.15172,0,8.14,0,0.538,5.701,95,3.7872,4,307,21,358.77,18.35,13.1 -"35",1.61282,0,8.14,0,0.538,6.096,96.9,3.7598,4,307,21,248.31,20.34,13.5 -"36",0.06417,0,5.96,0,0.499,5.933,68.2,3.3603,5,279,19.2,396.9,9.68,18.9 -"37",0.09744,0,5.96,0,0.499,5.841,61.4,3.3779,5,279,19.2,377.56,11.41,20 -"38",0.08014,0,5.96,0,0.499,5.85,41.5,3.9342,5,279,19.2,396.9,8.77,21 -"39",0.17505,0,5.96,0,0.499,5.966,30.2,3.8473,5,279,19.2,393.43,10.13,24.7 -"40",0.02763,75,2.95,0,0.428,6.595,21.8,5.4011,3,252,18.3,395.63,4.32,30.8 -"41",0.03359,75,2.95,0,0.428,7.024,15.8,5.4011,3,252,18.3,395.62,1.98,34.9 -"42",0.12744,0,6.91,0,0.448,6.77,2.9,5.7209,3,233,17.9,385.41,4.84,26.6 -"43",0.1415,0,6.91,0,0.448,6.169,6.6,5.7209,3,233,17.9,383.37,5.81,25.3 -"44",0.15936,0,6.91,0,0.448,6.211,6.5,5.7209,3,233,17.9,394.46,7.44,24.7 -"45",0.12269,0,6.91,0,0.448,6.069,40,5.7209,3,233,17.9,389.39,9.55,21.2 -"46",0.17142,0,6.91,0,0.448,5.682,33.8,5.1004,3,233,17.9,396.9,10.21,19.3 -"47",0.18836,0,6.91,0,0.448,5.786,33.3,5.1004,3,233,17.9,396.9,14.15,20 -"48",0.22927,0,6.91,0,0.448,6.03,85.5,5.6894,3,233,17.9,392.74,18.8,16.6 -"49",0.25387,0,6.91,0,0.448,5.399,95.3,5.87,3,233,17.9,396.9,30.81,14.4 -"50",0.21977,0,6.91,0,0.448,5.602,62,6.0877,3,233,17.9,396.9,16.2,19.4 -"51",0.08873,21,5.64,0,0.439,5.963,45.7,6.8147,4,243,16.8,395.56,13.45,19.7 -"52",0.04337,21,5.64,0,0.439,6.115,63,6.8147,4,243,16.8,393.97,9.43,20.5 -"53",0.0536,21,5.64,0,0.439,6.511,21.1,6.8147,4,243,16.8,396.9,5.28,25 -"54",0.04981,21,5.64,0,0.439,5.998,21.4,6.8147,4,243,16.8,396.9,8.43,23.4 -"55",0.0136,75,4,0,0.41,5.888,47.6,7.3197,3,469,21.1,396.9,14.8,18.9 -"56",0.01311,90,1.22,0,0.403,7.249,21.9,8.6966,5,226,17.9,395.93,4.81,35.4 -"57",0.02055,85,0.74,0,0.41,6.383,35.7,9.1876,2,313,17.3,396.9,5.77,24.7 -"58",0.01432,100,1.32,0,0.411,6.816,40.5,8.3248,5,256,15.1,392.9,3.95,31.6 -"59",0.15445,25,5.13,0,0.453,6.145,29.2,7.8148,8,284,19.7,390.68,6.86,23.3 -"60",0.10328,25,5.13,0,0.453,5.927,47.2,6.932,8,284,19.7,396.9,9.22,19.6 -"61",0.14932,25,5.13,0,0.453,5.741,66.2,7.2254,8,284,19.7,395.11,13.15,18.7 -"62",0.17171,25,5.13,0,0.453,5.966,93.4,6.8185,8,284,19.7,378.08,14.44,16 -"63",0.11027,25,5.13,0,0.453,6.456,67.8,7.2255,8,284,19.7,396.9,6.73,22.2 -"64",0.1265,25,5.13,0,0.453,6.762,43.4,7.9809,8,284,19.7,395.58,9.5,25 -"65",0.01951,17.5,1.38,0,0.4161,7.104,59.5,9.2229,3,216,18.6,393.24,8.05,33 -"66",0.03584,80,3.37,0,0.398,6.29,17.8,6.6115,4,337,16.1,396.9,4.67,23.5 -"67",0.04379,80,3.37,0,0.398,5.787,31.1,6.6115,4,337,16.1,396.9,10.24,19.4 -"68",0.05789,12.5,6.07,0,0.409,5.878,21.4,6.498,4,345,18.9,396.21,8.1,22 -"69",0.13554,12.5,6.07,0,0.409,5.594,36.8,6.498,4,345,18.9,396.9,13.09,17.4 -"70",0.12816,12.5,6.07,0,0.409,5.885,33,6.498,4,345,18.9,396.9,8.79,20.9 -"71",0.08826,0,10.81,0,0.413,6.417,6.6,5.2873,4,305,19.2,383.73,6.72,24.2 -"72",0.15876,0,10.81,0,0.413,5.961,17.5,5.2873,4,305,19.2,376.94,9.88,21.7 -"73",0.09164,0,10.81,0,0.413,6.065,7.8,5.2873,4,305,19.2,390.91,5.52,22.8 -"74",0.19539,0,10.81,0,0.413,6.245,6.2,5.2873,4,305,19.2,377.17,7.54,23.4 -"75",0.07896,0,12.83,0,0.437,6.273,6,4.2515,5,398,18.7,394.92,6.78,24.1 -"76",0.09512,0,12.83,0,0.437,6.286,45,4.5026,5,398,18.7,383.23,8.94,21.4 -"77",0.10153,0,12.83,0,0.437,6.279,74.5,4.0522,5,398,18.7,373.66,11.97,20 -"78",0.08707,0,12.83,0,0.437,6.14,45.8,4.0905,5,398,18.7,386.96,10.27,20.8 -"79",0.05646,0,12.83,0,0.437,6.232,53.7,5.0141,5,398,18.7,386.4,12.34,21.2 -"80",0.08387,0,12.83,0,0.437,5.874,36.6,4.5026,5,398,18.7,396.06,9.1,20.3 -"81",0.04113,25,4.86,0,0.426,6.727,33.5,5.4007,4,281,19,396.9,5.29,28 -"82",0.04462,25,4.86,0,0.426,6.619,70.4,5.4007,4,281,19,395.63,7.22,23.9 -"83",0.03659,25,4.86,0,0.426,6.302,32.2,5.4007,4,281,19,396.9,6.72,24.8 -"84",0.03551,25,4.86,0,0.426,6.167,46.7,5.4007,4,281,19,390.64,7.51,22.9 -"85",0.05059,0,4.49,0,0.449,6.389,48,4.7794,3,247,18.5,396.9,9.62,23.9 -"86",0.05735,0,4.49,0,0.449,6.63,56.1,4.4377,3,247,18.5,392.3,6.53,26.6 -"87",0.05188,0,4.49,0,0.449,6.015,45.1,4.4272,3,247,18.5,395.99,12.86,22.5 -"88",0.07151,0,4.49,0,0.449,6.121,56.8,3.7476,3,247,18.5,395.15,8.44,22.2 -"89",0.0566,0,3.41,0,0.489,7.007,86.3,3.4217,2,270,17.8,396.9,5.5,23.6 -"90",0.05302,0,3.41,0,0.489,7.079,63.1,3.4145,2,270,17.8,396.06,5.7,28.7 -"91",0.04684,0,3.41,0,0.489,6.417,66.1,3.0923,2,270,17.8,392.18,8.81,22.6 -"92",0.03932,0,3.41,0,0.489,6.405,73.9,3.0921,2,270,17.8,393.55,8.2,22 -"93",0.04203,28,15.04,0,0.464,6.442,53.6,3.6659,4,270,18.2,395.01,8.16,22.9 -"94",0.02875,28,15.04,0,0.464,6.211,28.9,3.6659,4,270,18.2,396.33,6.21,25 -"95",0.04294,28,15.04,0,0.464,6.249,77.3,3.615,4,270,18.2,396.9,10.59,20.6 -"96",0.12204,0,2.89,0,0.445,6.625,57.8,3.4952,2,276,18,357.98,6.65,28.4 -"97",0.11504,0,2.89,0,0.445,6.163,69.6,3.4952,2,276,18,391.83,11.34,21.4 -"98",0.12083,0,2.89,0,0.445,8.069,76,3.4952,2,276,18,396.9,4.21,38.7 -"99",0.08187,0,2.89,0,0.445,7.82,36.9,3.4952,2,276,18,393.53,3.57,43.8 -"100",0.0686,0,2.89,0,0.445,7.416,62.5,3.4952,2,276,18,396.9,6.19,33.2 -"101",0.14866,0,8.56,0,0.52,6.727,79.9,2.7778,5,384,20.9,394.76,9.42,27.5 -"102",0.11432,0,8.56,0,0.52,6.781,71.3,2.8561,5,384,20.9,395.58,7.67,26.5 -"103",0.22876,0,8.56,0,0.52,6.405,85.4,2.7147,5,384,20.9,70.8,10.63,18.6 -"104",0.21161,0,8.56,0,0.52,6.137,87.4,2.7147,5,384,20.9,394.47,13.44,19.3 -"105",0.1396,0,8.56,0,0.52,6.167,90,2.421,5,384,20.9,392.69,12.33,20.1 -"106",0.13262,0,8.56,0,0.52,5.851,96.7,2.1069,5,384,20.9,394.05,16.47,19.5 -"107",0.1712,0,8.56,0,0.52,5.836,91.9,2.211,5,384,20.9,395.67,18.66,19.5 -"108",0.13117,0,8.56,0,0.52,6.127,85.2,2.1224,5,384,20.9,387.69,14.09,20.4 -"109",0.12802,0,8.56,0,0.52,6.474,97.1,2.4329,5,384,20.9,395.24,12.27,19.8 -"110",0.26363,0,8.56,0,0.52,6.229,91.2,2.5451,5,384,20.9,391.23,15.55,19.4 -"111",0.10793,0,8.56,0,0.52,6.195,54.4,2.7778,5,384,20.9,393.49,13,21.7 -"112",0.10084,0,10.01,0,0.547,6.715,81.6,2.6775,6,432,17.8,395.59,10.16,22.8 -"113",0.12329,0,10.01,0,0.547,5.913,92.9,2.3534,6,432,17.8,394.95,16.21,18.8 -"114",0.22212,0,10.01,0,0.547,6.092,95.4,2.548,6,432,17.8,396.9,17.09,18.7 -"115",0.14231,0,10.01,0,0.547,6.254,84.2,2.2565,6,432,17.8,388.74,10.45,18.5 -"116",0.17134,0,10.01,0,0.547,5.928,88.2,2.4631,6,432,17.8,344.91,15.76,18.3 -"117",0.13158,0,10.01,0,0.547,6.176,72.5,2.7301,6,432,17.8,393.3,12.04,21.2 -"118",0.15098,0,10.01,0,0.547,6.021,82.6,2.7474,6,432,17.8,394.51,10.3,19.2 -"119",0.13058,0,10.01,0,0.547,5.872,73.1,2.4775,6,432,17.8,338.63,15.37,20.4 -"120",0.14476,0,10.01,0,0.547,5.731,65.2,2.7592,6,432,17.8,391.5,13.61,19.3 -"121",0.06899,0,25.65,0,0.581,5.87,69.7,2.2577,2,188,19.1,389.15,14.37,22 -"122",0.07165,0,25.65,0,0.581,6.004,84.1,2.1974,2,188,19.1,377.67,14.27,20.3 -"123",0.09299,0,25.65,0,0.581,5.961,92.9,2.0869,2,188,19.1,378.09,17.93,20.5 -"124",0.15038,0,25.65,0,0.581,5.856,97,1.9444,2,188,19.1,370.31,25.41,17.3 -"125",0.09849,0,25.65,0,0.581,5.879,95.8,2.0063,2,188,19.1,379.38,17.58,18.8 -"126",0.16902,0,25.65,0,0.581,5.986,88.4,1.9929,2,188,19.1,385.02,14.81,21.4 -"127",0.38735,0,25.65,0,0.581,5.613,95.6,1.7572,2,188,19.1,359.29,27.26,15.7 -"128",0.25915,0,21.89,0,0.624,5.693,96,1.7883,4,437,21.2,392.11,17.19,16.2 -"129",0.32543,0,21.89,0,0.624,6.431,98.8,1.8125,4,437,21.2,396.9,15.39,18 -"130",0.88125,0,21.89,0,0.624,5.637,94.7,1.9799,4,437,21.2,396.9,18.34,14.3 -"131",0.34006,0,21.89,0,0.624,6.458,98.9,2.1185,4,437,21.2,395.04,12.6,19.2 -"132",1.19294,0,21.89,0,0.624,6.326,97.7,2.271,4,437,21.2,396.9,12.26,19.6 -"133",0.59005,0,21.89,0,0.624,6.372,97.9,2.3274,4,437,21.2,385.76,11.12,23 -"134",0.32982,0,21.89,0,0.624,5.822,95.4,2.4699,4,437,21.2,388.69,15.03,18.4 -"135",0.97617,0,21.89,0,0.624,5.757,98.4,2.346,4,437,21.2,262.76,17.31,15.6 -"136",0.55778,0,21.89,0,0.624,6.335,98.2,2.1107,4,437,21.2,394.67,16.96,18.1 -"137",0.32264,0,21.89,0,0.624,5.942,93.5,1.9669,4,437,21.2,378.25,16.9,17.4 -"138",0.35233,0,21.89,0,0.624,6.454,98.4,1.8498,4,437,21.2,394.08,14.59,17.1 -"139",0.2498,0,21.89,0,0.624,5.857,98.2,1.6686,4,437,21.2,392.04,21.32,13.3 -"140",0.54452,0,21.89,0,0.624,6.151,97.9,1.6687,4,437,21.2,396.9,18.46,17.8 -"141",0.2909,0,21.89,0,0.624,6.174,93.6,1.6119,4,437,21.2,388.08,24.16,14 -"142",1.62864,0,21.89,0,0.624,5.019,100,1.4394,4,437,21.2,396.9,34.41,14.4 -"143",3.32105,0,19.58,1,0.871,5.403,100,1.3216,5,403,14.7,396.9,26.82,13.4 -"144",4.0974,0,19.58,0,0.871,5.468,100,1.4118,5,403,14.7,396.9,26.42,15.6 -"145",2.77974,0,19.58,0,0.871,4.903,97.8,1.3459,5,403,14.7,396.9,29.29,11.8 -"146",2.37934,0,19.58,0,0.871,6.13,100,1.4191,5,403,14.7,172.91,27.8,13.8 -"147",2.15505,0,19.58,0,0.871,5.628,100,1.5166,5,403,14.7,169.27,16.65,15.6 -"148",2.36862,0,19.58,0,0.871,4.926,95.7,1.4608,5,403,14.7,391.71,29.53,14.6 -"149",2.33099,0,19.58,0,0.871,5.186,93.8,1.5296,5,403,14.7,356.99,28.32,17.8 -"150",2.73397,0,19.58,0,0.871,5.597,94.9,1.5257,5,403,14.7,351.85,21.45,15.4 -"151",1.6566,0,19.58,0,0.871,6.122,97.3,1.618,5,403,14.7,372.8,14.1,21.5 -"152",1.49632,0,19.58,0,0.871,5.404,100,1.5916,5,403,14.7,341.6,13.28,19.6 -"153",1.12658,0,19.58,1,0.871,5.012,88,1.6102,5,403,14.7,343.28,12.12,15.3 -"154",2.14918,0,19.58,0,0.871,5.709,98.5,1.6232,5,403,14.7,261.95,15.79,19.4 -"155",1.41385,0,19.58,1,0.871,6.129,96,1.7494,5,403,14.7,321.02,15.12,17 -"156",3.53501,0,19.58,1,0.871,6.152,82.6,1.7455,5,403,14.7,88.01,15.02,15.6 -"157",2.44668,0,19.58,0,0.871,5.272,94,1.7364,5,403,14.7,88.63,16.14,13.1 -"158",1.22358,0,19.58,0,0.605,6.943,97.4,1.8773,5,403,14.7,363.43,4.59,41.3 -"159",1.34284,0,19.58,0,0.605,6.066,100,1.7573,5,403,14.7,353.89,6.43,24.3 -"160",1.42502,0,19.58,0,0.871,6.51,100,1.7659,5,403,14.7,364.31,7.39,23.3 -"161",1.27346,0,19.58,1,0.605,6.25,92.6,1.7984,5,403,14.7,338.92,5.5,27 -"162",1.46336,0,19.58,0,0.605,7.489,90.8,1.9709,5,403,14.7,374.43,1.73,50 -"163",1.83377,0,19.58,1,0.605,7.802,98.2,2.0407,5,403,14.7,389.61,1.92,50 -"164",1.51902,0,19.58,1,0.605,8.375,93.9,2.162,5,403,14.7,388.45,3.32,50 -"165",2.24236,0,19.58,0,0.605,5.854,91.8,2.422,5,403,14.7,395.11,11.64,22.7 -"166",2.924,0,19.58,0,0.605,6.101,93,2.2834,5,403,14.7,240.16,9.81,25 -"167",2.01019,0,19.58,0,0.605,7.929,96.2,2.0459,5,403,14.7,369.3,3.7,50 -"168",1.80028,0,19.58,0,0.605,5.877,79.2,2.4259,5,403,14.7,227.61,12.14,23.8 -"169",2.3004,0,19.58,0,0.605,6.319,96.1,2.1,5,403,14.7,297.09,11.1,23.8 -"170",2.44953,0,19.58,0,0.605,6.402,95.2,2.2625,5,403,14.7,330.04,11.32,22.3 -"171",1.20742,0,19.58,0,0.605,5.875,94.6,2.4259,5,403,14.7,292.29,14.43,17.4 -"172",2.3139,0,19.58,0,0.605,5.88,97.3,2.3887,5,403,14.7,348.13,12.03,19.1 -"173",0.13914,0,4.05,0,0.51,5.572,88.5,2.5961,5,296,16.6,396.9,14.69,23.1 -"174",0.09178,0,4.05,0,0.51,6.416,84.1,2.6463,5,296,16.6,395.5,9.04,23.6 -"175",0.08447,0,4.05,0,0.51,5.859,68.7,2.7019,5,296,16.6,393.23,9.64,22.6 -"176",0.06664,0,4.05,0,0.51,6.546,33.1,3.1323,5,296,16.6,390.96,5.33,29.4 -"177",0.07022,0,4.05,0,0.51,6.02,47.2,3.5549,5,296,16.6,393.23,10.11,23.2 -"178",0.05425,0,4.05,0,0.51,6.315,73.4,3.3175,5,296,16.6,395.6,6.29,24.6 -"179",0.06642,0,4.05,0,0.51,6.86,74.4,2.9153,5,296,16.6,391.27,6.92,29.9 -"180",0.0578,0,2.46,0,0.488,6.98,58.4,2.829,3,193,17.8,396.9,5.04,37.2 -"181",0.06588,0,2.46,0,0.488,7.765,83.3,2.741,3,193,17.8,395.56,7.56,39.8 -"182",0.06888,0,2.46,0,0.488,6.144,62.2,2.5979,3,193,17.8,396.9,9.45,36.2 -"183",0.09103,0,2.46,0,0.488,7.155,92.2,2.7006,3,193,17.8,394.12,4.82,37.9 -"184",0.10008,0,2.46,0,0.488,6.563,95.6,2.847,3,193,17.8,396.9,5.68,32.5 -"185",0.08308,0,2.46,0,0.488,5.604,89.8,2.9879,3,193,17.8,391,13.98,26.4 -"186",0.06047,0,2.46,0,0.488,6.153,68.8,3.2797,3,193,17.8,387.11,13.15,29.6 -"187",0.05602,0,2.46,0,0.488,7.831,53.6,3.1992,3,193,17.8,392.63,4.45,50 -"188",0.07875,45,3.44,0,0.437,6.782,41.1,3.7886,5,398,15.2,393.87,6.68,32 -"189",0.12579,45,3.44,0,0.437,6.556,29.1,4.5667,5,398,15.2,382.84,4.56,29.8 -"190",0.0837,45,3.44,0,0.437,7.185,38.9,4.5667,5,398,15.2,396.9,5.39,34.9 -"191",0.09068,45,3.44,0,0.437,6.951,21.5,6.4798,5,398,15.2,377.68,5.1,37 -"192",0.06911,45,3.44,0,0.437,6.739,30.8,6.4798,5,398,15.2,389.71,4.69,30.5 -"193",0.08664,45,3.44,0,0.437,7.178,26.3,6.4798,5,398,15.2,390.49,2.87,36.4 -"194",0.02187,60,2.93,0,0.401,6.8,9.9,6.2196,1,265,15.6,393.37,5.03,31.1 -"195",0.01439,60,2.93,0,0.401,6.604,18.8,6.2196,1,265,15.6,376.7,4.38,29.1 -"196",0.01381,80,0.46,0,0.422,7.875,32,5.6484,4,255,14.4,394.23,2.97,50 -"197",0.04011,80,1.52,0,0.404,7.287,34.1,7.309,2,329,12.6,396.9,4.08,33.3 -"198",0.04666,80,1.52,0,0.404,7.107,36.6,7.309,2,329,12.6,354.31,8.61,30.3 -"199",0.03768,80,1.52,0,0.404,7.274,38.3,7.309,2,329,12.6,392.2,6.62,34.6 -"200",0.0315,95,1.47,0,0.403,6.975,15.3,7.6534,3,402,17,396.9,4.56,34.9 -"201",0.01778,95,1.47,0,0.403,7.135,13.9,7.6534,3,402,17,384.3,4.45,32.9 -"202",0.03445,82.5,2.03,0,0.415,6.162,38.4,6.27,2,348,14.7,393.77,7.43,24.1 -"203",0.02177,82.5,2.03,0,0.415,7.61,15.7,6.27,2,348,14.7,395.38,3.11,42.3 -"204",0.0351,95,2.68,0,0.4161,7.853,33.2,5.118,4,224,14.7,392.78,3.81,48.5 -"205",0.02009,95,2.68,0,0.4161,8.034,31.9,5.118,4,224,14.7,390.55,2.88,50 -"206",0.13642,0,10.59,0,0.489,5.891,22.3,3.9454,4,277,18.6,396.9,10.87,22.6 -"207",0.22969,0,10.59,0,0.489,6.326,52.5,4.3549,4,277,18.6,394.87,10.97,24.4 -"208",0.25199,0,10.59,0,0.489,5.783,72.7,4.3549,4,277,18.6,389.43,18.06,22.5 -"209",0.13587,0,10.59,1,0.489,6.064,59.1,4.2392,4,277,18.6,381.32,14.66,24.4 -"210",0.43571,0,10.59,1,0.489,5.344,100,3.875,4,277,18.6,396.9,23.09,20 -"211",0.17446,0,10.59,1,0.489,5.96,92.1,3.8771,4,277,18.6,393.25,17.27,21.7 -"212",0.37578,0,10.59,1,0.489,5.404,88.6,3.665,4,277,18.6,395.24,23.98,19.3 -"213",0.21719,0,10.59,1,0.489,5.807,53.8,3.6526,4,277,18.6,390.94,16.03,22.4 -"214",0.14052,0,10.59,0,0.489,6.375,32.3,3.9454,4,277,18.6,385.81,9.38,28.1 -"215",0.28955,0,10.59,0,0.489,5.412,9.8,3.5875,4,277,18.6,348.93,29.55,23.7 -"216",0.19802,0,10.59,0,0.489,6.182,42.4,3.9454,4,277,18.6,393.63,9.47,25 -"217",0.0456,0,13.89,1,0.55,5.888,56,3.1121,5,276,16.4,392.8,13.51,23.3 -"218",0.07013,0,13.89,0,0.55,6.642,85.1,3.4211,5,276,16.4,392.78,9.69,28.7 -"219",0.11069,0,13.89,1,0.55,5.951,93.8,2.8893,5,276,16.4,396.9,17.92,21.5 -"220",0.11425,0,13.89,1,0.55,6.373,92.4,3.3633,5,276,16.4,393.74,10.5,23 -"221",0.35809,0,6.2,1,0.507,6.951,88.5,2.8617,8,307,17.4,391.7,9.71,26.7 -"222",0.40771,0,6.2,1,0.507,6.164,91.3,3.048,8,307,17.4,395.24,21.46,21.7 -"223",0.62356,0,6.2,1,0.507,6.879,77.7,3.2721,8,307,17.4,390.39,9.93,27.5 -"224",0.6147,0,6.2,0,0.507,6.618,80.8,3.2721,8,307,17.4,396.9,7.6,30.1 -"225",0.31533,0,6.2,0,0.504,8.266,78.3,2.8944,8,307,17.4,385.05,4.14,44.8 -"226",0.52693,0,6.2,0,0.504,8.725,83,2.8944,8,307,17.4,382,4.63,50 -"227",0.38214,0,6.2,0,0.504,8.04,86.5,3.2157,8,307,17.4,387.38,3.13,37.6 -"228",0.41238,0,6.2,0,0.504,7.163,79.9,3.2157,8,307,17.4,372.08,6.36,31.6 -"229",0.29819,0,6.2,0,0.504,7.686,17,3.3751,8,307,17.4,377.51,3.92,46.7 -"230",0.44178,0,6.2,0,0.504,6.552,21.4,3.3751,8,307,17.4,380.34,3.76,31.5 -"231",0.537,0,6.2,0,0.504,5.981,68.1,3.6715,8,307,17.4,378.35,11.65,24.3 -"232",0.46296,0,6.2,0,0.504,7.412,76.9,3.6715,8,307,17.4,376.14,5.25,31.7 -"233",0.57529,0,6.2,0,0.507,8.337,73.3,3.8384,8,307,17.4,385.91,2.47,41.7 -"234",0.33147,0,6.2,0,0.507,8.247,70.4,3.6519,8,307,17.4,378.95,3.95,48.3 -"235",0.44791,0,6.2,1,0.507,6.726,66.5,3.6519,8,307,17.4,360.2,8.05,29 -"236",0.33045,0,6.2,0,0.507,6.086,61.5,3.6519,8,307,17.4,376.75,10.88,24 -"237",0.52058,0,6.2,1,0.507,6.631,76.5,4.148,8,307,17.4,388.45,9.54,25.1 -"238",0.51183,0,6.2,0,0.507,7.358,71.6,4.148,8,307,17.4,390.07,4.73,31.5 -"239",0.08244,30,4.93,0,0.428,6.481,18.5,6.1899,6,300,16.6,379.41,6.36,23.7 -"240",0.09252,30,4.93,0,0.428,6.606,42.2,6.1899,6,300,16.6,383.78,7.37,23.3 -"241",0.11329,30,4.93,0,0.428,6.897,54.3,6.3361,6,300,16.6,391.25,11.38,22 -"242",0.10612,30,4.93,0,0.428,6.095,65.1,6.3361,6,300,16.6,394.62,12.4,20.1 -"243",0.1029,30,4.93,0,0.428,6.358,52.9,7.0355,6,300,16.6,372.75,11.22,22.2 -"244",0.12757,30,4.93,0,0.428,6.393,7.8,7.0355,6,300,16.6,374.71,5.19,23.7 -"245",0.20608,22,5.86,0,0.431,5.593,76.5,7.9549,7,330,19.1,372.49,12.5,17.6 -"246",0.19133,22,5.86,0,0.431,5.605,70.2,7.9549,7,330,19.1,389.13,18.46,18.5 -"247",0.33983,22,5.86,0,0.431,6.108,34.9,8.0555,7,330,19.1,390.18,9.16,24.3 -"248",0.19657,22,5.86,0,0.431,6.226,79.2,8.0555,7,330,19.1,376.14,10.15,20.5 -"249",0.16439,22,5.86,0,0.431,6.433,49.1,7.8265,7,330,19.1,374.71,9.52,24.5 -"250",0.19073,22,5.86,0,0.431,6.718,17.5,7.8265,7,330,19.1,393.74,6.56,26.2 -"251",0.1403,22,5.86,0,0.431,6.487,13,7.3967,7,330,19.1,396.28,5.9,24.4 -"252",0.21409,22,5.86,0,0.431,6.438,8.9,7.3967,7,330,19.1,377.07,3.59,24.8 -"253",0.08221,22,5.86,0,0.431,6.957,6.8,8.9067,7,330,19.1,386.09,3.53,29.6 -"254",0.36894,22,5.86,0,0.431,8.259,8.4,8.9067,7,330,19.1,396.9,3.54,42.8 -"255",0.04819,80,3.64,0,0.392,6.108,32,9.2203,1,315,16.4,392.89,6.57,21.9 -"256",0.03548,80,3.64,0,0.392,5.876,19.1,9.2203,1,315,16.4,395.18,9.25,20.9 -"257",0.01538,90,3.75,0,0.394,7.454,34.2,6.3361,3,244,15.9,386.34,3.11,44 -"258",0.61154,20,3.97,0,0.647,8.704,86.9,1.801,5,264,13,389.7,5.12,50 -"259",0.66351,20,3.97,0,0.647,7.333,100,1.8946,5,264,13,383.29,7.79,36 -"260",0.65665,20,3.97,0,0.647,6.842,100,2.0107,5,264,13,391.93,6.9,30.1 -"261",0.54011,20,3.97,0,0.647,7.203,81.8,2.1121,5,264,13,392.8,9.59,33.8 -"262",0.53412,20,3.97,0,0.647,7.52,89.4,2.1398,5,264,13,388.37,7.26,43.1 -"263",0.52014,20,3.97,0,0.647,8.398,91.5,2.2885,5,264,13,386.86,5.91,48.8 -"264",0.82526,20,3.97,0,0.647,7.327,94.5,2.0788,5,264,13,393.42,11.25,31 -"265",0.55007,20,3.97,0,0.647,7.206,91.6,1.9301,5,264,13,387.89,8.1,36.5 -"266",0.76162,20,3.97,0,0.647,5.56,62.8,1.9865,5,264,13,392.4,10.45,22.8 -"267",0.7857,20,3.97,0,0.647,7.014,84.6,2.1329,5,264,13,384.07,14.79,30.7 -"268",0.57834,20,3.97,0,0.575,8.297,67,2.4216,5,264,13,384.54,7.44,50 -"269",0.5405,20,3.97,0,0.575,7.47,52.6,2.872,5,264,13,390.3,3.16,43.5 -"270",0.09065,20,6.96,1,0.464,5.92,61.5,3.9175,3,223,18.6,391.34,13.65,20.7 -"271",0.29916,20,6.96,0,0.464,5.856,42.1,4.429,3,223,18.6,388.65,13,21.1 -"272",0.16211,20,6.96,0,0.464,6.24,16.3,4.429,3,223,18.6,396.9,6.59,25.2 -"273",0.1146,20,6.96,0,0.464,6.538,58.7,3.9175,3,223,18.6,394.96,7.73,24.4 -"274",0.22188,20,6.96,1,0.464,7.691,51.8,4.3665,3,223,18.6,390.77,6.58,35.2 -"275",0.05644,40,6.41,1,0.447,6.758,32.9,4.0776,4,254,17.6,396.9,3.53,32.4 -"276",0.09604,40,6.41,0,0.447,6.854,42.8,4.2673,4,254,17.6,396.9,2.98,32 -"277",0.10469,40,6.41,1,0.447,7.267,49,4.7872,4,254,17.6,389.25,6.05,33.2 -"278",0.06127,40,6.41,1,0.447,6.826,27.6,4.8628,4,254,17.6,393.45,4.16,33.1 -"279",0.07978,40,6.41,0,0.447,6.482,32.1,4.1403,4,254,17.6,396.9,7.19,29.1 -"280",0.21038,20,3.33,0,0.4429,6.812,32.2,4.1007,5,216,14.9,396.9,4.85,35.1 -"281",0.03578,20,3.33,0,0.4429,7.82,64.5,4.6947,5,216,14.9,387.31,3.76,45.4 -"282",0.03705,20,3.33,0,0.4429,6.968,37.2,5.2447,5,216,14.9,392.23,4.59,35.4 -"283",0.06129,20,3.33,1,0.4429,7.645,49.7,5.2119,5,216,14.9,377.07,3.01,46 -"284",0.01501,90,1.21,1,0.401,7.923,24.8,5.885,1,198,13.6,395.52,3.16,50 -"285",0.00906,90,2.97,0,0.4,7.088,20.8,7.3073,1,285,15.3,394.72,7.85,32.2 -"286",0.01096,55,2.25,0,0.389,6.453,31.9,7.3073,1,300,15.3,394.72,8.23,22 -"287",0.01965,80,1.76,0,0.385,6.23,31.5,9.0892,1,241,18.2,341.6,12.93,20.1 -"288",0.03871,52.5,5.32,0,0.405,6.209,31.3,7.3172,6,293,16.6,396.9,7.14,23.2 -"289",0.0459,52.5,5.32,0,0.405,6.315,45.6,7.3172,6,293,16.6,396.9,7.6,22.3 -"290",0.04297,52.5,5.32,0,0.405,6.565,22.9,7.3172,6,293,16.6,371.72,9.51,24.8 -"291",0.03502,80,4.95,0,0.411,6.861,27.9,5.1167,4,245,19.2,396.9,3.33,28.5 -"292",0.07886,80,4.95,0,0.411,7.148,27.7,5.1167,4,245,19.2,396.9,3.56,37.3 -"293",0.03615,80,4.95,0,0.411,6.63,23.4,5.1167,4,245,19.2,396.9,4.7,27.9 -"294",0.08265,0,13.92,0,0.437,6.127,18.4,5.5027,4,289,16,396.9,8.58,23.9 -"295",0.08199,0,13.92,0,0.437,6.009,42.3,5.5027,4,289,16,396.9,10.4,21.7 -"296",0.12932,0,13.92,0,0.437,6.678,31.1,5.9604,4,289,16,396.9,6.27,28.6 -"297",0.05372,0,13.92,0,0.437,6.549,51,5.9604,4,289,16,392.85,7.39,27.1 -"298",0.14103,0,13.92,0,0.437,5.79,58,6.32,4,289,16,396.9,15.84,20.3 -"299",0.06466,70,2.24,0,0.4,6.345,20.1,7.8278,5,358,14.8,368.24,4.97,22.5 -"300",0.05561,70,2.24,0,0.4,7.041,10,7.8278,5,358,14.8,371.58,4.74,29 -"301",0.04417,70,2.24,0,0.4,6.871,47.4,7.8278,5,358,14.8,390.86,6.07,24.8 -"302",0.03537,34,6.09,0,0.433,6.59,40.4,5.4917,7,329,16.1,395.75,9.5,22 -"303",0.09266,34,6.09,0,0.433,6.495,18.4,5.4917,7,329,16.1,383.61,8.67,26.4 -"304",0.1,34,6.09,0,0.433,6.982,17.7,5.4917,7,329,16.1,390.43,4.86,33.1 -"305",0.05515,33,2.18,0,0.472,7.236,41.1,4.022,7,222,18.4,393.68,6.93,36.1 -"306",0.05479,33,2.18,0,0.472,6.616,58.1,3.37,7,222,18.4,393.36,8.93,28.4 -"307",0.07503,33,2.18,0,0.472,7.42,71.9,3.0992,7,222,18.4,396.9,6.47,33.4 -"308",0.04932,33,2.18,0,0.472,6.849,70.3,3.1827,7,222,18.4,396.9,7.53,28.2 -"309",0.49298,0,9.9,0,0.544,6.635,82.5,3.3175,4,304,18.4,396.9,4.54,22.8 -"310",0.3494,0,9.9,0,0.544,5.972,76.7,3.1025,4,304,18.4,396.24,9.97,20.3 -"311",2.63548,0,9.9,0,0.544,4.973,37.8,2.5194,4,304,18.4,350.45,12.64,16.1 -"312",0.79041,0,9.9,0,0.544,6.122,52.8,2.6403,4,304,18.4,396.9,5.98,22.1 -"313",0.26169,0,9.9,0,0.544,6.023,90.4,2.834,4,304,18.4,396.3,11.72,19.4 -"314",0.26938,0,9.9,0,0.544,6.266,82.8,3.2628,4,304,18.4,393.39,7.9,21.6 -"315",0.3692,0,9.9,0,0.544,6.567,87.3,3.6023,4,304,18.4,395.69,9.28,23.8 -"316",0.25356,0,9.9,0,0.544,5.705,77.7,3.945,4,304,18.4,396.42,11.5,16.2 -"317",0.31827,0,9.9,0,0.544,5.914,83.2,3.9986,4,304,18.4,390.7,18.33,17.8 -"318",0.24522,0,9.9,0,0.544,5.782,71.7,4.0317,4,304,18.4,396.9,15.94,19.8 -"319",0.40202,0,9.9,0,0.544,6.382,67.2,3.5325,4,304,18.4,395.21,10.36,23.1 -"320",0.47547,0,9.9,0,0.544,6.113,58.8,4.0019,4,304,18.4,396.23,12.73,21 -"321",0.1676,0,7.38,0,0.493,6.426,52.3,4.5404,5,287,19.6,396.9,7.2,23.8 -"322",0.18159,0,7.38,0,0.493,6.376,54.3,4.5404,5,287,19.6,396.9,6.87,23.1 -"323",0.35114,0,7.38,0,0.493,6.041,49.9,4.7211,5,287,19.6,396.9,7.7,20.4 -"324",0.28392,0,7.38,0,0.493,5.708,74.3,4.7211,5,287,19.6,391.13,11.74,18.5 -"325",0.34109,0,7.38,0,0.493,6.415,40.1,4.7211,5,287,19.6,396.9,6.12,25 -"326",0.19186,0,7.38,0,0.493,6.431,14.7,5.4159,5,287,19.6,393.68,5.08,24.6 -"327",0.30347,0,7.38,0,0.493,6.312,28.9,5.4159,5,287,19.6,396.9,6.15,23 -"328",0.24103,0,7.38,0,0.493,6.083,43.7,5.4159,5,287,19.6,396.9,12.79,22.2 -"329",0.06617,0,3.24,0,0.46,5.868,25.8,5.2146,4,430,16.9,382.44,9.97,19.3 -"330",0.06724,0,3.24,0,0.46,6.333,17.2,5.2146,4,430,16.9,375.21,7.34,22.6 -"331",0.04544,0,3.24,0,0.46,6.144,32.2,5.8736,4,430,16.9,368.57,9.09,19.8 -"332",0.05023,35,6.06,0,0.4379,5.706,28.4,6.6407,1,304,16.9,394.02,12.43,17.1 -"333",0.03466,35,6.06,0,0.4379,6.031,23.3,6.6407,1,304,16.9,362.25,7.83,19.4 -"334",0.05083,0,5.19,0,0.515,6.316,38.1,6.4584,5,224,20.2,389.71,5.68,22.2 -"335",0.03738,0,5.19,0,0.515,6.31,38.5,6.4584,5,224,20.2,389.4,6.75,20.7 -"336",0.03961,0,5.19,0,0.515,6.037,34.5,5.9853,5,224,20.2,396.9,8.01,21.1 -"337",0.03427,0,5.19,0,0.515,5.869,46.3,5.2311,5,224,20.2,396.9,9.8,19.5 -"338",0.03041,0,5.19,0,0.515,5.895,59.6,5.615,5,224,20.2,394.81,10.56,18.5 -"339",0.03306,0,5.19,0,0.515,6.059,37.3,4.8122,5,224,20.2,396.14,8.51,20.6 -"340",0.05497,0,5.19,0,0.515,5.985,45.4,4.8122,5,224,20.2,396.9,9.74,19 -"341",0.06151,0,5.19,0,0.515,5.968,58.5,4.8122,5,224,20.2,396.9,9.29,18.7 -"342",0.01301,35,1.52,0,0.442,7.241,49.3,7.0379,1,284,15.5,394.74,5.49,32.7 -"343",0.02498,0,1.89,0,0.518,6.54,59.7,6.2669,1,422,15.9,389.96,8.65,16.5 -"344",0.02543,55,3.78,0,0.484,6.696,56.4,5.7321,5,370,17.6,396.9,7.18,23.9 -"345",0.03049,55,3.78,0,0.484,6.874,28.1,6.4654,5,370,17.6,387.97,4.61,31.2 -"346",0.03113,0,4.39,0,0.442,6.014,48.5,8.0136,3,352,18.8,385.64,10.53,17.5 -"347",0.06162,0,4.39,0,0.442,5.898,52.3,8.0136,3,352,18.8,364.61,12.67,17.2 -"348",0.0187,85,4.15,0,0.429,6.516,27.7,8.5353,4,351,17.9,392.43,6.36,23.1 -"349",0.01501,80,2.01,0,0.435,6.635,29.7,8.344,4,280,17,390.94,5.99,24.5 -"350",0.02899,40,1.25,0,0.429,6.939,34.5,8.7921,1,335,19.7,389.85,5.89,26.6 -"351",0.06211,40,1.25,0,0.429,6.49,44.4,8.7921,1,335,19.7,396.9,5.98,22.9 -"352",0.0795,60,1.69,0,0.411,6.579,35.9,10.7103,4,411,18.3,370.78,5.49,24.1 -"353",0.07244,60,1.69,0,0.411,5.884,18.5,10.7103,4,411,18.3,392.33,7.79,18.6 -"354",0.01709,90,2.02,0,0.41,6.728,36.1,12.1265,5,187,17,384.46,4.5,30.1 -"355",0.04301,80,1.91,0,0.413,5.663,21.9,10.5857,4,334,22,382.8,8.05,18.2 -"356",0.10659,80,1.91,0,0.413,5.936,19.5,10.5857,4,334,22,376.04,5.57,20.6 -"357",8.98296,0,18.1,1,0.77,6.212,97.4,2.1222,24,666,20.2,377.73,17.6,17.8 -"358",3.8497,0,18.1,1,0.77,6.395,91,2.5052,24,666,20.2,391.34,13.27,21.7 -"359",5.20177,0,18.1,1,0.77,6.127,83.4,2.7227,24,666,20.2,395.43,11.48,22.7 -"360",4.26131,0,18.1,0,0.77,6.112,81.3,2.5091,24,666,20.2,390.74,12.67,22.6 -"361",4.54192,0,18.1,0,0.77,6.398,88,2.5182,24,666,20.2,374.56,7.79,25 -"362",3.83684,0,18.1,0,0.77,6.251,91.1,2.2955,24,666,20.2,350.65,14.19,19.9 -"363",3.67822,0,18.1,0,0.77,5.362,96.2,2.1036,24,666,20.2,380.79,10.19,20.8 -"364",4.22239,0,18.1,1,0.77,5.803,89,1.9047,24,666,20.2,353.04,14.64,16.8 -"365",3.47428,0,18.1,1,0.718,8.78,82.9,1.9047,24,666,20.2,354.55,5.29,21.9 -"366",4.55587,0,18.1,0,0.718,3.561,87.9,1.6132,24,666,20.2,354.7,7.12,27.5 -"367",3.69695,0,18.1,0,0.718,4.963,91.4,1.7523,24,666,20.2,316.03,14,21.9 -"368",13.5222,0,18.1,0,0.631,3.863,100,1.5106,24,666,20.2,131.42,13.33,23.1 -"369",4.89822,0,18.1,0,0.631,4.97,100,1.3325,24,666,20.2,375.52,3.26,50 -"370",5.66998,0,18.1,1,0.631,6.683,96.8,1.3567,24,666,20.2,375.33,3.73,50 -"371",6.53876,0,18.1,1,0.631,7.016,97.5,1.2024,24,666,20.2,392.05,2.96,50 -"372",9.2323,0,18.1,0,0.631,6.216,100,1.1691,24,666,20.2,366.15,9.53,50 -"373",8.26725,0,18.1,1,0.668,5.875,89.6,1.1296,24,666,20.2,347.88,8.88,50 -"374",11.1081,0,18.1,0,0.668,4.906,100,1.1742,24,666,20.2,396.9,34.77,13.8 -"375",18.4982,0,18.1,0,0.668,4.138,100,1.137,24,666,20.2,396.9,37.97,13.8 -"376",19.6091,0,18.1,0,0.671,7.313,97.9,1.3163,24,666,20.2,396.9,13.44,15 -"377",15.288,0,18.1,0,0.671,6.649,93.3,1.3449,24,666,20.2,363.02,23.24,13.9 -"378",9.82349,0,18.1,0,0.671,6.794,98.8,1.358,24,666,20.2,396.9,21.24,13.3 -"379",23.6482,0,18.1,0,0.671,6.38,96.2,1.3861,24,666,20.2,396.9,23.69,13.1 -"380",17.8667,0,18.1,0,0.671,6.223,100,1.3861,24,666,20.2,393.74,21.78,10.2 -"381",88.9762,0,18.1,0,0.671,6.968,91.9,1.4165,24,666,20.2,396.9,17.21,10.4 -"382",15.8744,0,18.1,0,0.671,6.545,99.1,1.5192,24,666,20.2,396.9,21.08,10.9 -"383",9.18702,0,18.1,0,0.7,5.536,100,1.5804,24,666,20.2,396.9,23.6,11.3 -"384",7.99248,0,18.1,0,0.7,5.52,100,1.5331,24,666,20.2,396.9,24.56,12.3 -"385",20.0849,0,18.1,0,0.7,4.368,91.2,1.4395,24,666,20.2,285.83,30.63,8.8 -"386",16.8118,0,18.1,0,0.7,5.277,98.1,1.4261,24,666,20.2,396.9,30.81,7.2 -"387",24.3938,0,18.1,0,0.7,4.652,100,1.4672,24,666,20.2,396.9,28.28,10.5 -"388",22.5971,0,18.1,0,0.7,5,89.5,1.5184,24,666,20.2,396.9,31.99,7.4 -"389",14.3337,0,18.1,0,0.7,4.88,100,1.5895,24,666,20.2,372.92,30.62,10.2 -"390",8.15174,0,18.1,0,0.7,5.39,98.9,1.7281,24,666,20.2,396.9,20.85,11.5 -"391",6.96215,0,18.1,0,0.7,5.713,97,1.9265,24,666,20.2,394.43,17.11,15.1 -"392",5.29305,0,18.1,0,0.7,6.051,82.5,2.1678,24,666,20.2,378.38,18.76,23.2 -"393",11.5779,0,18.1,0,0.7,5.036,97,1.77,24,666,20.2,396.9,25.68,9.7 -"394",8.64476,0,18.1,0,0.693,6.193,92.6,1.7912,24,666,20.2,396.9,15.17,13.8 -"395",13.3598,0,18.1,0,0.693,5.887,94.7,1.7821,24,666,20.2,396.9,16.35,12.7 -"396",8.71675,0,18.1,0,0.693,6.471,98.8,1.7257,24,666,20.2,391.98,17.12,13.1 -"397",5.87205,0,18.1,0,0.693,6.405,96,1.6768,24,666,20.2,396.9,19.37,12.5 -"398",7.67202,0,18.1,0,0.693,5.747,98.9,1.6334,24,666,20.2,393.1,19.92,8.5 -"399",38.3518,0,18.1,0,0.693,5.453,100,1.4896,24,666,20.2,396.9,30.59,5 -"400",9.91655,0,18.1,0,0.693,5.852,77.8,1.5004,24,666,20.2,338.16,29.97,6.3 -"401",25.0461,0,18.1,0,0.693,5.987,100,1.5888,24,666,20.2,396.9,26.77,5.6 -"402",14.2362,0,18.1,0,0.693,6.343,100,1.5741,24,666,20.2,396.9,20.32,7.2 -"403",9.59571,0,18.1,0,0.693,6.404,100,1.639,24,666,20.2,376.11,20.31,12.1 -"404",24.8017,0,18.1,0,0.693,5.349,96,1.7028,24,666,20.2,396.9,19.77,8.3 -"405",41.5292,0,18.1,0,0.693,5.531,85.4,1.6074,24,666,20.2,329.46,27.38,8.5 -"406",67.9208,0,18.1,0,0.693,5.683,100,1.4254,24,666,20.2,384.97,22.98,5 -"407",20.7162,0,18.1,0,0.659,4.138,100,1.1781,24,666,20.2,370.22,23.34,11.9 -"408",11.9511,0,18.1,0,0.659,5.608,100,1.2852,24,666,20.2,332.09,12.13,27.9 -"409",7.40389,0,18.1,0,0.597,5.617,97.9,1.4547,24,666,20.2,314.64,26.4,17.2 -"410",14.4383,0,18.1,0,0.597,6.852,100,1.4655,24,666,20.2,179.36,19.78,27.5 -"411",51.1358,0,18.1,0,0.597,5.757,100,1.413,24,666,20.2,2.6,10.11,15 -"412",14.0507,0,18.1,0,0.597,6.657,100,1.5275,24,666,20.2,35.05,21.22,17.2 -"413",18.811,0,18.1,0,0.597,4.628,100,1.5539,24,666,20.2,28.79,34.37,17.9 -"414",28.6558,0,18.1,0,0.597,5.155,100,1.5894,24,666,20.2,210.97,20.08,16.3 -"415",45.7461,0,18.1,0,0.693,4.519,100,1.6582,24,666,20.2,88.27,36.98,7 -"416",18.0846,0,18.1,0,0.679,6.434,100,1.8347,24,666,20.2,27.25,29.05,7.2 -"417",10.8342,0,18.1,0,0.679,6.782,90.8,1.8195,24,666,20.2,21.57,25.79,7.5 -"418",25.9406,0,18.1,0,0.679,5.304,89.1,1.6475,24,666,20.2,127.36,26.64,10.4 -"419",73.5341,0,18.1,0,0.679,5.957,100,1.8026,24,666,20.2,16.45,20.62,8.8 -"420",11.8123,0,18.1,0,0.718,6.824,76.5,1.794,24,666,20.2,48.45,22.74,8.4 -"421",11.0874,0,18.1,0,0.718,6.411,100,1.8589,24,666,20.2,318.75,15.02,16.7 -"422",7.02259,0,18.1,0,0.718,6.006,95.3,1.8746,24,666,20.2,319.98,15.7,14.2 -"423",12.0482,0,18.1,0,0.614,5.648,87.6,1.9512,24,666,20.2,291.55,14.1,20.8 -"424",7.05042,0,18.1,0,0.614,6.103,85.1,2.0218,24,666,20.2,2.52,23.29,13.4 -"425",8.79212,0,18.1,0,0.584,5.565,70.6,2.0635,24,666,20.2,3.65,17.16,11.7 -"426",15.8603,0,18.1,0,0.679,5.896,95.4,1.9096,24,666,20.2,7.68,24.39,8.3 -"427",12.2472,0,18.1,0,0.584,5.837,59.7,1.9976,24,666,20.2,24.65,15.69,10.2 -"428",37.6619,0,18.1,0,0.679,6.202,78.7,1.8629,24,666,20.2,18.82,14.52,10.9 -"429",7.36711,0,18.1,0,0.679,6.193,78.1,1.9356,24,666,20.2,96.73,21.52,11 -"430",9.33889,0,18.1,0,0.679,6.38,95.6,1.9682,24,666,20.2,60.72,24.08,9.5 -"431",8.49213,0,18.1,0,0.584,6.348,86.1,2.0527,24,666,20.2,83.45,17.64,14.5 -"432",10.0623,0,18.1,0,0.584,6.833,94.3,2.0882,24,666,20.2,81.33,19.69,14.1 -"433",6.44405,0,18.1,0,0.584,6.425,74.8,2.2004,24,666,20.2,97.95,12.03,16.1 -"434",5.58107,0,18.1,0,0.713,6.436,87.9,2.3158,24,666,20.2,100.19,16.22,14.3 -"435",13.9134,0,18.1,0,0.713,6.208,95,2.2222,24,666,20.2,100.63,15.17,11.7 -"436",11.1604,0,18.1,0,0.74,6.629,94.6,2.1247,24,666,20.2,109.85,23.27,13.4 -"437",14.4208,0,18.1,0,0.74,6.461,93.3,2.0026,24,666,20.2,27.49,18.05,9.6 -"438",15.1772,0,18.1,0,0.74,6.152,100,1.9142,24,666,20.2,9.32,26.45,8.7 -"439",13.6781,0,18.1,0,0.74,5.935,87.9,1.8206,24,666,20.2,68.95,34.02,8.4 -"440",9.39063,0,18.1,0,0.74,5.627,93.9,1.8172,24,666,20.2,396.9,22.88,12.8 -"441",22.0511,0,18.1,0,0.74,5.818,92.4,1.8662,24,666,20.2,391.45,22.11,10.5 -"442",9.72418,0,18.1,0,0.74,6.406,97.2,2.0651,24,666,20.2,385.96,19.52,17.1 -"443",5.66637,0,18.1,0,0.74,6.219,100,2.0048,24,666,20.2,395.69,16.59,18.4 -"444",9.96654,0,18.1,0,0.74,6.485,100,1.9784,24,666,20.2,386.73,18.85,15.4 -"445",12.8023,0,18.1,0,0.74,5.854,96.6,1.8956,24,666,20.2,240.52,23.79,10.8 -"446",10.6718,0,18.1,0,0.74,6.459,94.8,1.9879,24,666,20.2,43.06,23.98,11.8 -"447",6.28807,0,18.1,0,0.74,6.341,96.4,2.072,24,666,20.2,318.01,17.79,14.9 -"448",9.92485,0,18.1,0,0.74,6.251,96.6,2.198,24,666,20.2,388.52,16.44,12.6 -"449",9.32909,0,18.1,0,0.713,6.185,98.7,2.2616,24,666,20.2,396.9,18.13,14.1 -"450",7.52601,0,18.1,0,0.713,6.417,98.3,2.185,24,666,20.2,304.21,19.31,13 -"451",6.71772,0,18.1,0,0.713,6.749,92.6,2.3236,24,666,20.2,0.32,17.44,13.4 -"452",5.44114,0,18.1,0,0.713,6.655,98.2,2.3552,24,666,20.2,355.29,17.73,15.2 -"453",5.09017,0,18.1,0,0.713,6.297,91.8,2.3682,24,666,20.2,385.09,17.27,16.1 -"454",8.24809,0,18.1,0,0.713,7.393,99.3,2.4527,24,666,20.2,375.87,16.74,17.8 -"455",9.51363,0,18.1,0,0.713,6.728,94.1,2.4961,24,666,20.2,6.68,18.71,14.9 -"456",4.75237,0,18.1,0,0.713,6.525,86.5,2.4358,24,666,20.2,50.92,18.13,14.1 -"457",4.66883,0,18.1,0,0.713,5.976,87.9,2.5806,24,666,20.2,10.48,19.01,12.7 -"458",8.20058,0,18.1,0,0.713,5.936,80.3,2.7792,24,666,20.2,3.5,16.94,13.5 -"459",7.75223,0,18.1,0,0.713,6.301,83.7,2.7831,24,666,20.2,272.21,16.23,14.9 -"460",6.80117,0,18.1,0,0.713,6.081,84.4,2.7175,24,666,20.2,396.9,14.7,20 -"461",4.81213,0,18.1,0,0.713,6.701,90,2.5975,24,666,20.2,255.23,16.42,16.4 -"462",3.69311,0,18.1,0,0.713,6.376,88.4,2.5671,24,666,20.2,391.43,14.65,17.7 -"463",6.65492,0,18.1,0,0.713,6.317,83,2.7344,24,666,20.2,396.9,13.99,19.5 -"464",5.82115,0,18.1,0,0.713,6.513,89.9,2.8016,24,666,20.2,393.82,10.29,20.2 -"465",7.83932,0,18.1,0,0.655,6.209,65.4,2.9634,24,666,20.2,396.9,13.22,21.4 -"466",3.1636,0,18.1,0,0.655,5.759,48.2,3.0665,24,666,20.2,334.4,14.13,19.9 -"467",3.77498,0,18.1,0,0.655,5.952,84.7,2.8715,24,666,20.2,22.01,17.15,19 -"468",4.42228,0,18.1,0,0.584,6.003,94.5,2.5403,24,666,20.2,331.29,21.32,19.1 -"469",15.5757,0,18.1,0,0.58,5.926,71,2.9084,24,666,20.2,368.74,18.13,19.1 -"470",13.0751,0,18.1,0,0.58,5.713,56.7,2.8237,24,666,20.2,396.9,14.76,20.1 -"471",4.34879,0,18.1,0,0.58,6.167,84,3.0334,24,666,20.2,396.9,16.29,19.9 -"472",4.03841,0,18.1,0,0.532,6.229,90.7,3.0993,24,666,20.2,395.33,12.87,19.6 -"473",3.56868,0,18.1,0,0.58,6.437,75,2.8965,24,666,20.2,393.37,14.36,23.2 -"474",4.64689,0,18.1,0,0.614,6.98,67.6,2.5329,24,666,20.2,374.68,11.66,29.8 -"475",8.05579,0,18.1,0,0.584,5.427,95.4,2.4298,24,666,20.2,352.58,18.14,13.8 -"476",6.39312,0,18.1,0,0.584,6.162,97.4,2.206,24,666,20.2,302.76,24.1,13.3 -"477",4.87141,0,18.1,0,0.614,6.484,93.6,2.3053,24,666,20.2,396.21,18.68,16.7 -"478",15.0234,0,18.1,0,0.614,5.304,97.3,2.1007,24,666,20.2,349.48,24.91,12 -"479",10.233,0,18.1,0,0.614,6.185,96.7,2.1705,24,666,20.2,379.7,18.03,14.6 -"480",14.3337,0,18.1,0,0.614,6.229,88,1.9512,24,666,20.2,383.32,13.11,21.4 -"481",5.82401,0,18.1,0,0.532,6.242,64.7,3.4242,24,666,20.2,396.9,10.74,23 -"482",5.70818,0,18.1,0,0.532,6.75,74.9,3.3317,24,666,20.2,393.07,7.74,23.7 -"483",5.73116,0,18.1,0,0.532,7.061,77,3.4106,24,666,20.2,395.28,7.01,25 -"484",2.81838,0,18.1,0,0.532,5.762,40.3,4.0983,24,666,20.2,392.92,10.42,21.8 -"485",2.37857,0,18.1,0,0.583,5.871,41.9,3.724,24,666,20.2,370.73,13.34,20.6 -"486",3.67367,0,18.1,0,0.583,6.312,51.9,3.9917,24,666,20.2,388.62,10.58,21.2 -"487",5.69175,0,18.1,0,0.583,6.114,79.8,3.5459,24,666,20.2,392.68,14.98,19.1 -"488",4.83567,0,18.1,0,0.583,5.905,53.2,3.1523,24,666,20.2,388.22,11.45,20.6 -"489",0.15086,0,27.74,0,0.609,5.454,92.7,1.8209,4,711,20.1,395.09,18.06,15.2 -"490",0.18337,0,27.74,0,0.609,5.414,98.3,1.7554,4,711,20.1,344.05,23.97,7 -"491",0.20746,0,27.74,0,0.609,5.093,98,1.8226,4,711,20.1,318.43,29.68,8.1 -"492",0.10574,0,27.74,0,0.609,5.983,98.8,1.8681,4,711,20.1,390.11,18.07,13.6 -"493",0.11132,0,27.74,0,0.609,5.983,83.5,2.1099,4,711,20.1,396.9,13.35,20.1 -"494",0.17331,0,9.69,0,0.585,5.707,54,2.3817,6,391,19.2,396.9,12.01,21.8 -"495",0.27957,0,9.69,0,0.585,5.926,42.6,2.3817,6,391,19.2,396.9,13.59,24.5 -"496",0.17899,0,9.69,0,0.585,5.67,28.8,2.7986,6,391,19.2,393.29,17.6,23.1 -"497",0.2896,0,9.69,0,0.585,5.39,72.9,2.7986,6,391,19.2,396.9,21.14,19.7 -"498",0.26838,0,9.69,0,0.585,5.794,70.6,2.8927,6,391,19.2,396.9,14.1,18.3 -"499",0.23912,0,9.69,0,0.585,6.019,65.3,2.4091,6,391,19.2,396.9,12.92,21.2 -"500",0.17783,0,9.69,0,0.585,5.569,73.5,2.3999,6,391,19.2,395.77,15.1,17.5 -"501",0.22438,0,9.69,0,0.585,6.027,79.7,2.4982,6,391,19.2,396.9,14.33,16.8 -"502",0.06263,0,11.93,0,0.573,6.593,69.1,2.4786,1,273,21,391.99,9.67,22.4 -"503",0.04527,0,11.93,0,0.573,6.12,76.7,2.2875,1,273,21,396.9,9.08,20.6 -"504",0.06076,0,11.93,0,0.573,6.976,91,2.1675,1,273,21,396.9,5.64,23.9 -"505",0.10959,0,11.93,0,0.573,6.794,89.3,2.3889,1,273,21,393.45,6.48,22 -"506",0.04741,0,11.93,0,0.573,6.03,80.8,2.505,1,273,21,396.9,7.88,11.9 \ No newline at end of file diff --git a/imodels/optimal_classification_tree/__init__.py b/imodels/optimal_classification_tree/__init__.py index d3fe8352..e69de29b 100644 --- a/imodels/optimal_classification_tree/__init__.py +++ b/imodels/optimal_classification_tree/__init__.py @@ -1,2 +0,0 @@ -'''(in progress) [optimal classification tree](https://link.springer.com/article/10.1007/s10994-017-5633-9) (based on [this implementation](https://github.com/pan5431333/pyoptree)) - learns succinct trees using global optimization rather than greedy heuristics -''' \ No newline at end of file diff --git a/imodels/optimal_classification_tree/pyoptree/example.py b/imodels/optimal_classification_tree/example.py similarity index 100% rename from imodels/optimal_classification_tree/pyoptree/example.py rename to imodels/optimal_classification_tree/example.py diff --git a/imodels/optimal_classification_tree/pyoptree/localsearch.py b/imodels/optimal_classification_tree/localsearch.py similarity index 100% rename from imodels/optimal_classification_tree/pyoptree/localsearch.py rename to imodels/optimal_classification_tree/localsearch.py diff --git a/imodels/optimal_classification_tree/pyoptree/optree.py b/imodels/optimal_classification_tree/optree.py similarity index 100% rename from imodels/optimal_classification_tree/pyoptree/optree.py rename to imodels/optimal_classification_tree/optree.py diff --git a/imodels/optimal_classification_tree/pyoptree/__init__.py b/imodels/optimal_classification_tree/pyoptree/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/imodels/optimal_classification_tree/pyoptree/tree.py b/imodels/optimal_classification_tree/tree.py similarity index 100% rename from imodels/optimal_classification_tree/pyoptree/tree.py rename to imodels/optimal_classification_tree/tree.py diff --git a/imodels/skrules/datasets/__init__.py b/imodels/skrules/datasets/__init__.py deleted file mode 100644 index f43d66ec..00000000 --- a/imodels/skrules/datasets/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from .credit_data import load_credit_data - -__all__ = ['load_credit_data'] diff --git a/imodels/skrules/datasets/credit_data.py b/imodels/skrules/datasets/credit_data.py deleted file mode 100644 index 2f2979ae..00000000 --- a/imodels/skrules/datasets/credit_data.py +++ /dev/null @@ -1,45 +0,0 @@ -"""default of credit card clients dataset. - -The original database is available from UCI Machine Learning Repository: - - https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients - -The data contains 30000 observations on 24 variables. - -References ----------- - -Lichman, M. (2013). UCI Machine Learning Repository -[http://archive.ics.uci.edu/ml]. -Irvine, CA: University of California, School of Information and Computer -Science. - -""" - -import pandas as pd -import numpy as np -from sklearn.datasets.base import get_data_home, Bunch -from sklearn.datasets.base import _fetch_remote, RemoteFileMetadata -from os.path import exists, join - - -def load_credit_data(): - sk_data_dir = get_data_home() - archive = RemoteFileMetadata( - filename='default of credit card clients.xls', - url='https://archive.ics.uci.edu/ml/machine-learning-databases/' - '00350/default%20of%20credit%20card%20clients.xls', - checksum=('30c6be3abd8dcfd3e6096c828bad8c2f' - '011238620f5369220bd60cfc82700933')) - - if not exists(join(sk_data_dir, archive.filename)): - _fetch_remote(archive, dirname=sk_data_dir) - - data = pd.read_excel(join(sk_data_dir, archive.filename), - sheet_name='Data', header=1) - - dataset = Bunch( - data=(data.drop('default payment next month', axis=1)), - target=np.array(data['default payment next month']) - ) - return dataset diff --git a/notebooks/1_model_based.ipynb b/notebooks/1_model_based.ipynb index 977b3781..02f5d735 100644 --- a/notebooks/1_model_based.ipynb +++ b/notebooks/1_model_based.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 28, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -60,7 +60,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAA9yElEQVR4nO2de1xVVfr/3wsQIcFBMa+JOV6zocb5Ksf5oqkNJl7y0m00+WZTlmbmhW8ppk46pXJK6UhRzZRm2oxYWX6Nn5o6M6WeiTKEGUQN0kTTwORyQAERWL8/DpwAQQ5wzt7nwHq/XrxU3Hutz37O2s9eZz3PeraQUqJQKBQKbfDQW4BCoVC0JpTTVSgUCg1RTlehUCg0RDldhUKh0BDldBUKhUJDlNNVKBQKDVFOV6FQKDREOV2FQqHQEOV0FQqFQkOU01UoFAoNUU5XoVAoNEQ5XYVCodAQ5XQVCoVCQ5TTVSgUCg1RTlehUCg0RDldhUKh0BDldBUKhUJDlNNVKBQKDVFOV6FQKDTES28BitaBr69vVklJSRe9ddwIHx+f7OLi4q5661C0bIR6MaVCC4QQ0tXHmhACKaXQW4eiZaOWFxQKhUJDlNNVKBQKDVFOV6E5W7duJSMjgz/+8Y/84x//IDY2lpSUFObOncuuXbvIzc1l1qxZdZ5bXl5eb7txcXGsX7+ewsJCAHbu3Mn69evZuHEjANu2bSM6OpqzZ88yZcoUsrKyHH9xCkUDqECaQnMiIiKYPn06CxYs4OrVq4SEhODt7Y2/vz/FxcV07NiRvn372o4vLCzko48+Ijs7m+nTp5ORkcGxY8cAGDlyJIMHD8ZisWA2mxkyZAheXtZhnZKSwsqVK5k5cybDhg2jW7duZGZmEhQUxJQpU/S4dIVCzXQV2lNYWIivry85OTm23w0aNAij0UhGRsZ1x5tMJrKzs3nqqafo1atXnW2WlZVxyy23MHLkSA4cOADAAw88gMlkwtfXly+//JKUlBQSExOdc1EKhZ2oma5Cc9544w02bNhAbGwsQ4cOxcfHh7S0NHbt2lXn8sGKFSvIy8vjgw8+4O677yYsLIywsLAaxwQGBuLr68uOHTuYO3cu8fHxDBw4kGvXrjF58mTGjRsHQElJCXl5eezbtw+LxcKCBQs0uWaFogqVMqbQhPpSxo4dO0ZKSgoRERG23+Xm5vLOO++wePFiLSWqlDGFJiinq9AEZ+XpSimJioqiuLiYBQsW0LFjR+677z7++c9/2o7Zs2cPX3zxBU8//TTvv/8+WVlZbNiwoS6NyukqnI5aXlDoxurVq/H39yc9PZ2uXbtiMBhISkoiICCAyZMnExsbi5eXF6tWrcLDw4MDBw5cF0ATQmCxWCgrK6NTp0787W9/Y8yYMbY+srOzKSoqIiAggJ49e7J06VJWrFih1yUrFCqQptAPIQTPPPMMnTt3ZtmyZRw9epQ+ffpQWFjIwYMHad++Pd7e3uTn59fbxpUrVwgNDWXOnDns3buXM2fO8OWXX/LNN98AcPDgQc6ePYvZbKaoqIiEhARGjBih0RUqFNejZroK3fDw8EAIgbe3d9VXewoLC7FYLAwfPpyjR48SFBREhw4dAOoMoLVp0waz2Uxqairz5s3j97//PdHR0QwZMoT4+HimTZsGwNWrV23LChMmTGDMmDEIoVYSFNqj1nQVmqBqLygUVtTygkKhUGiIcroKtyA6OrpJ5z300EO88cYbALz66qssX76czMxMPv30U9atW8fx48cdKVOhaBC1pqvQlLi4ODw8PIiIiGDTpk1cuHABo9HIpEmTuPXWWxkwYADp6eksWrSIF198kR49evDcc88B8NZbb1FUVES/fv1IS0sjICCAOXPmANSZ2QDWTRPFxcVIKSktLSUqKootW7aQnJzM7bffbtsyrFBohZrpKjSlX79+5OfnI6VESklmZiYAISEhTJ06lTvvvJOuXa11xA0GA3fddRdpaWkAJCYm0rFjR3Jzc21ZDg2tE7/55pv07duXtLS0GoGziooKFixYwLZt25x0pQpF3ajHvEJTqnJqk5OTKSkpobS0FAAvLy+EELY/AcxmMydPnmTVqlV8/vnnGAwGLBYLBoOB48ePY7FYKCoqol27dnVmNhQVFbFhwwbOnz9PWFgY3t7eGI1GZs2aRZs2bVi/fj1DhgzR3AaK1o3KXlBoQmOzF86cOUNiYqIt5UsLVPaCQguU01VogkoZUyisqDVdhUvQ1OyEy5cvs2bNGmbPnk1paSlGo5HZs2dz8eJFgBrF0QsLCzGZTERGRgIQGxvL/PnzuXLlisOuQ6FoCOV0FZpiNBqRUhITE0NCQgJRUVGcOHECgM2bN5OVlcW6dev48ccfbXUSKioqAGuGgslkwmQykZycDICfnx/PP/88ffv2paSkhCVLljBixAjy8vIAahRH9/f3Z+DAgeTm5gLW4F12djaenp46WELRWlFOV6EpPXv2ZMeOHRgMBgoKCujWrRtHjhwBsAXQysvLOXTokF21FwC++uorunfvTvv27Tl16hQ5OTkMGDAAuL44enh4OKGhoVy9epVhw4Yxffp0Ll265LwLVihqobIXFJoyceJEwsPDMZvNmM1m2rZta5vJBgcH8+6773Ly5EkiIiJISkpqsPZCQUEBixcvZurUqVgsFh5//HEmT57MuXPnMJvNBAcH24qjnzlzhm3btnHmzBkeeugh1q9fz6lTpxg9erTmdlC0XlQgTaEJKpCmUFhRywsKpyKsRDR8pGsghGijtwZFy0YtLyichhCiJ/AW0NPHxydHCBGot6Yb4ePjU1pSUvKNEOIxKWWS3noULRM101U4HCGEhxDiKSAZSASGFBcXd5JSClf+KSkp8QFeAXYLIYxCCF9dDalokag1XYVDEUL0B94GvIFZUso0nSU1GiFEZyAW+A3whJTyC50lKVoQaqarcAhCCC8hxGLgX8DHwHB3dLgAUsqLUsppwHPAX4UQbwoh2uutS9EyUE5X0WyEEHcCXwH3ACFSyg1SynKdZTUbKeX/Ab/CGvs4JoQYr7MkRQtALS8omowQoi2wHJgNRAHvunxeWBMRQvwO+AvwJbBQSql2VCiahJrpKpqEEOK3WANlwcCvpZSbWqrDBZBS/h24A7gIpAohpgn1ZktFE1AzXUWjEEL4AS8BvwcWAB+2ZGdbF0IIA7AJ+A6YK6U8r7MkhRuhZroKuxFCjAFSgQ7Ar6SUH7Q2hwsgpfwKa2ZDMpAihHhCzXoV9qJmuooGEUJ0ANYDvwPmSCn36CzJZRBCBGOd9RZiTS87pbMkhYujZrqKGyKEmAocA4qwzm6Vw62GlDIV+C3w/4CvhBCRQghVK1JRL2qmq6gTIURX4DXgTuBxKeUhnSW5PEKIvsA7gC9Wmx3TWZLCBVEzXUUNKgvUPAL8G2ug6E7lcO1DSvkdcDewEfinEOIFIYS3zrIULoaa6SpsCCF6AX8GumCdqR3VWZLbIoS4BWuxn17AY1LKIzpLUrgIaqarqCpQ8zSQBBzEuqtMOdxmIKX8AbgXWAN8KoRYJ4S4SWdZChdAzXRbOUKIAVi/Dguss9uTOktqcQghbgZMgAFrhsM/9VWk0BM1022lCCHaCCGWAmZgOzBCOVznIKX8SUo5A1gEbBFC/FkI8Qu9dSn0QTndVogQYjDWAjWjgSFSyteklBU6y2rxSCk/xVpAR2ItoHOvzpIUOqCWF1oRQggf4I/ALKxlC7e0xh1lroAQYjTWusNfAwuklD/pLEmhEWqm20oQQoQCKUB/4A4p5XvK4epH5bruHcB5rAV0HlZbiVsHaqbbwhFC+GONoN8PPCOl3KGzJEUthBAhWIOZZ4CnKjMfFC0UNdNtwQghxmItUOOHdQuvcrguiJTya+C/gCNAshBithBC3ZstFDXTbYEIIToCMcAo4Ekp5T59FSnsRQhxO9ZZbzHW9LLvdJakcDDqadpCEEJ4CiE+EkI8irVAjQXr7FY5XDei8r1yocAuIFEI8awQ4sPKl2UqWgBqpttCEEJEAUuAXGCmlPKwzpIUzUQI8UvgfazBzy+klPfrLEnhANRMt+WwDPABCoDvddaicAzfY11maANMrVw2Urg5aqbbQhBCeKgNDi0X9fm2HJTTVSgUCg3x0luAq+Lr65tVUlLSRW8dDeHj45NdXFzcVW8dCm1xh/GpxmbdqJluPQgh3GLDlhACKaXaydTKcIfxqcZm3ahAmkKhUGiIcrp2sHXrVjIyMvjjH//IP/7xD2JjYzl79ixTpkwhKyuLc+fOsXbtWhYsWEBpaSnTpk2rs53y8vJ6+4iNjSU6OhqA0tJSJk2aRFZWlu3/jxw5whNPPOHYC1O0COoanykpKcydO5ddu3aRm5vLrFmz6jy3vjGZl5eHyWRi3LhxXL582fb7bdu2ER0dzYULF4iJiWHVqlVkZmZiMpkYP368U66vpaHWdO0gIiKC6dOns2DBAq5evUpISAhBQUFMmTIFgJ49e7J06VJWrFiBt7c3v/71r23nXr16lZ07d/L9998zfvx4SkpK+Ne//gXA4MGDGTlyJADz58+3Od2//vWvhIeH29ooKiri2LFj9OnTR5sLVrgVdY1Pb29v/P39KS4upmPHjvTt29d2fGFhIR999BHZ2dlMnz6djIwMjh2zvkNz5MiRDB48mA4dOrBw4ULy8/Px8/MDIC0tjW7dupGZmUn37t3p0qUL58+fp1evXsybN48rV67ocv3uhprp2kFhYSG+vr7k5OTUe0xCQgIjRoy47vfvvfceKSkp/OEPf+COO+6wq7/U1FQOHz5MYmIiAF9//TUXL17EbDbXmP0qFFD3+Bw0aBBGo5GMjIzrjjeZTGRnZ/PUU0/Rq1evets9ceIEgwYNsv37yy+/JCUlxTYuZ8yYQe/evQHYv38/YWFhjrqkFo2a6drBG2+8wYYNG4iNjWXo0KH4+PiQl5fHvn37sFgs3HvvvWzYsIEJEyYwZsyYGuc++eSTFBUVsWPHDm6//XZCQkIICQm5ro/t27djNpv54YcfiImJYfPmzQwbNoz4+HimTZvGqFGjkFLStasKBitqUtf4TEtLY9euXXUuH6xYsYK8vDw++OAD7r77bsLCwup0mAkJCTz99NMAxMfH25YoSkpKSElJYffu3eTl5QHWicELL7zgxKtsOajshXqoLzp87NgxUlJSiIiIqPO80tJSXnrpJf70pz85WyKgIsStlcaMz9zcXN555x0WL16spUQ1NutBOd16cFZKzunTp3n22Wf5+OOPefXVV8nJyeGJJ56gV69epKamkpCQwNWrV/nDH/7AJ598wr59+9i9ezexsbF89913rF27lnbt2lXXqQZ2K8TR4zMvL4/33nuPzz77jPj4eNauXUtpaSmrVq3C398fs9nMkSNHOH78OM8884xtnD7yyCNs2rQJLy8vVq5cWVujGpt1oJYX7GT16tX4+/uTnp5O165dMRgMJCUlERAQwOTJk4mNjcXLy4tVq1bh4eHBgQMHrgtOVFRU8Nlnn9mWF0pLS4mKimLLli3MnTuX4OBggoODWbFixXXBiZCQEMxmM56enrrZQOGaOGJsVg+clZaWEhQURGBgIIcOHWL8+PGEhoZy00030bt37xrjNCkpiYcffpjXX3+dK1eu1JgQKOpGBdLsRAjBM888Q+fOnVm2bBlHjx6lT58+FBYWcvDgQdq3b4+3tzf5+fn1tvHtt9+SnZ2N2WwmPT2dut7OsnnzZu677z6gZnBi2LBhTJ8+nUuXLjnl+hTuiyPGJvwcOLv55pvx8vIiOTkZL6+f52V79+5l3LhxwM/jdOzYsezdu5effvoJDw/lTuxBzXTtxMPDAyEE3t7eVV+bKCwsxGKxMHz4cI4ePUpQUBAdOnQAqDM4cdttt7Fy5Uqio6Pp378/3t7eGI1GZs2aRXx8PD179mTnzp2Ul5czePBgW3DCYrEQFxfHqVOnGD16tB6Xr3BhHDE2oWbgrKysjHbt2jFq1ChbMLe0tBRvb2/MZrNtnPbq1YuKigrCwsLw9fXV9LrdFbWmWw/usM0S1LpZa8Udxqcam3Wjvg8oFAqFhiin6ySqdpc1ltOnT9vWdDdv3kxkZCTnzp1j48aNvPTSSxw5csSRMhWtmKaM0drbg7du3UpMTAznz593gsKWiVrTbYC4uDg8PDyIiIhg06ZNXLhwAaPRyKRJk7j11lsZMGAA6enpLFq0iBdffJEePXrw3HPPAfDWW29RVFREv379SEtLIyAggDlz5gDYld0QEhLC/v378fLy4tKlSyxfvhyj0cjQoUP1MYbCJdFyjNbeHpyQkIDBYKBNmza6Xb+7oWa6DdCvXz/y8/ORUiKlJDMzE7A6xKlTp3LnnXfadokZDAbuuusu0tLSAEhMTKRjx47k5ubaosk3Woernd0waNAgFi1aRGZmpi3Toa6MB0XrRssxCjW3B/v5+TFz5ky2b9/uxCtsWSin2wAWi4WysjKSk5MpKSmhtLQUAC8vL4QQtj8BzGYzu3fv5vbbbwesA9xisTBgwABbNLmoqAiwRpAXLlzIwoULGTx4MPBzdkNoaCj9+/dnzZo1vP3223Tp0oVOnTqxevVqlb2guA4txyhYsxwmTpwIWMdsXFwcoaGhWl6yW6OyF+qhsdHhM2fOkJiYWG9ZR2ehIsStk6ZkL2g9RtXYrBvldOvBHVJyQA3s1oo7jE81NutGLS80kaZmJwBERkYSHx9PeXk5UVFRREZGUlhYCMDOnTtZv349Gzdu5OTJk6xbt44NGzYAsGfPHqKiohyiX9Fyac7YjI2NZf78+Vy5cgWTycT9999vKw+ZmprK2rVrWblyJYWFhZhMJiIjI5FSsmTJEubPn8+pU6ccdRktFuV0G8BoNCKlJCYmhoSEBKKiojhx4gRgTenKyspi3bp1/Pjjj7ZC5hUV1jdlHzhwAJPJhMlkIjk52dbm/PnzAWv1p6CgIAwGA4cOHQIgJSWF//3f/+XgwYMMHDgQT09PiouLyc7OpqioiICAAG0NoHBZnDE2Q0JCyM7OxtPTk4ULFxIcHEy/fv0ACA4OZunSpZSXl+Pv78/AgQPJzc1FCGFbC+7UqZP2hnAzlNNtgJ49e7Jjxw4MBgMFBQV069bNlitbFZwoLy/n0KFDdu9xr6KuPe4PPPAAJpPJtqVy0aJF+Pn5cfDgQc6ePYvZbLYFOhStG2eMzeo1PiwWy3UP+eq1QcLDwwkNDcVisRAaGsqcOXNsBc4V9aPydBtg4sSJhIeHYzabMZvNtG3b1jZbCA4O5t133+XkyZNERESQlJRk1x737du3c/z4ccaPH3/dHveBAwdy7do1Jk+ezBdffMHBgwfx8vJi3rx5gPX1PzfddJN2BlC4LI4em7VrfOzcudP2SqratUE6dOjAtm3bOHPmDDNnzsRsNpOammobp4r6UYG0enCHQAWoYEVrxR3GpxqbdaOWFxQKhUJD1PJCPfj4+GQLIbroraMhfHx8svXWoNAedxifamzWjVpeaCJCiM5AEvCUlDLBwW2/APwO+J2U8poj21a0DoQQrwO3AFMduQ4hhBgAHAbGSSm/cVS7rQm1vNAEhBCewN+ArY52uJW8CBQBa5zQtqKFI4R4GAgHHnX0wq+U8lvgKeBDIURHR7bdWlAz3SYghHgJ+C0wVkpZ5qQ+OgHfAIuklJ84ow9Fy0MIMQj4AhgjpUxxYj8xwADgXillhbP6aYmomW4jEUJMAGYC053lcAGklJeAh4A/CyH6OasfRctBCOEP7AAWO9PhVrIE+AWw1Mn9tDjUTLcRCCFuBb4C7pNSmjXqcy4wG/itlFLtilDUibDuhtgGXJZSztKozx7AEeB/pJR/16LPloByunYihPDBGkD4q5TyVQ37FcD7QCnwmMsnZyp0QQjxDPAY8N9SymIN+70b+CswVEr5g1b9ujPK6dqJEOItoBPwoNaOTwjRDvgaeFVK+Y6WfStcHyHEMGAX1m9DmlecEUI8D0wARqlsm4ZRTtcOhBD/AyzH+jQv0EnDQOAQ1uDdUT00KFwPIcTNWFMX50kpd+mkwQP4P+A7KeUiPTS4E8rpNoAQIhj4B3C3lDJVZy0PAWuBIVLKPD21KPSnMnVxD3BUSqlrzU8hRAeszn+JlPJDPbW4Osrp3gAhRHusgYKXpJRb9dYDIITYAPQGpqhUndaNEGIVcBfW9DCnZdI0Qs9/AXuB4ZX5vIo6UE63HioDWB8Cl6SUc/TWU4UQwhv4HNglpWx6tWqFWyOECAfewfqtJ0tvPVUIIZ4E5gMGKeUVvfW4Isrp1oMQYhEwA+tTu0RvPdURQtyCdQb+sJTyn3rrUWiLEKIX1tTFB6WUh/TWU53KycpmrHsAHlHZNtejnG4dCCGGY00yN0gpz+gsp06EEGHAFqzBvfN661FogxCiLdaA6nYp5Xq99dSFEOImIBF4U0r5pt56XA3ldGtRWbkpCXhSSrlbbz03QgixHOse+9EqVad1IISIA7oCD7jyLLJyF6UZmCClPKK3HldCbQOuhhDCC+uunndd3eFWsgawAGpttxVQWchmDG6wSUZKmQHMwVoYJ1BvPa6EmulWQwixBhgKhEspy/XWYw+VlZ6SgGellDv01qNwDkKI27EGUH8npfyPznLsRgixDhgETFTZNlbUTLcSIcS9QATW4JRbOFwAKWUu8CDwphCiv956FI6nWiGbZ93J4VayFPAHluktxFVQM11ACPFL4Eusua9f6q2nKQgh5gBzgWGqME7LoTIbIB6wSCmf1FtPUxBCdMdapnSmlHK/3nr0ptU73cpCNmZgi5Ryg956mkrlzbkFqMAJxasV+iCEmI+1lGioq6UuNgYhxCis8ZIQKeU5fdXoi3K6QvwFa13Qae7uqCoL43wFxEop/6K3HkXzEEL8FtiJ9dvL9zrLaTZCiChgMjBSSlmqtx69aNVOVwgxE+ua01ApZaHeehxBtXdYhUspk/TWo2gaznwHn15UFsbZCXwvpVygsxzdaJVOVwgxAvDD+nV8lJQyTWdJDkUI8QDwMtZ3WZ2uTN9RuAGVQbN7sH52X0spn9dZkkOpLIzzDbAKKJJSfqSzJM1prU73AHA78IaU8kW99TiayhnFNmAw8IGUcrnOkhR2IoS4D2vedT7WMp4trppc5TW+A0igk7sv6zWWVpcyVhlwGg4EAn10luMsfLBWIvsl8IDOWhSN4wGgL9AF6KyzFmfRG/AGOtJy78F6aXVOt5IvsL7W5FG9hTiDypQxA9a840Sd5SgaxwmsX737ttTyiJU1IwYCuwHdS1JqTatcXlAoFAq9aK0zXYVCodAFLz069fX1zSopKemiR9/24OPjk11cXNxVbx324Oq2BGVPR+Mu9nQHW4L29tRleUEI4dIBSyEEUkqhtw57cHVbgrKno3EXe7qDLUF7e6rlBYVCodAQ5XQVCoVCQ3RZ061i69atDBs2jK1btzJq1CiOHTvG6NGj+fvf/05iYiJvvPEGixcv5p133rnu3PLycjw9PetsNzIykpCQEKZNmwbAyZMnSUhIoE2bNkycOJH33nuPrKwsXn75ZebMmcPEiROJiIhw6rVqQV32nDFjBuvWrcPPz4+nnnqqSfaMi4ujpKSEJ598En9/f3bu3MmpU6cICAggMDDQ9vcBAwbwxRdf4Ofnx4IF7r/L0xn2zMvL47333uOzzz7jww8/xM/Pr8b4NBgM/P3vf8fX15dp06YRHx9PYWEhL7zwghaX7DTqsuVdd93FX/7yF8LDwxk+fHijbSmlJCoqiuLiYhYsWECfPn0wm80cOXKE48ePM3fuXFv7o0ePZuPGjZw9e5aYmBgtLrledHW6ERERTJ8+nQULFnD16lVCQkIIDg6ma9eutGnTho4dO9K3b1/b8YWFhXz00UdkZ2czffp0MjIyOHbsGAAjR45k8ODBAMyfP5/ExJ/TUwcOHMiePXsoLi7Gy8uLnJwc2rVrh4eHBx06dKCoqGVUQqzLnp9//jmzZs1i7969tG3bttH2tFgsmM1mhgwZgpeXdbikpKSwcuVKZs6cSe/evW1/f/zxx/nv//5vVq1apcv1Oxpn2LNDhw4sXLiQ/Px8/Pz8gJrj8/DhwyxcuJC5c+cSGRlJly5dOH/e/V+BV5ctvb298ff3p7i4uEn3uhACi8VCWVkZnTp1AiA0NJSbbrqJ3r1712jf39+fgQMHkpKSosfl10DX5YXCwkJ8fX3Jycmp8ftPPvmE++6777rjTSYT2dnZPPXUU/Tq1atRfS1atAg/Pz8yMzN5+umnCQoKwsvLizfffJPi4mIKC92/3k199qwPe+xZVlbGLbfcwsiRIzlw4AAADzzwACaTCV9f3xp/B4iJieHxxx93zAXpjDPsCXDixAkGDRpU43dV43PatGn8+c9/prTUWoRrxowZ9O7du+kX4SLUZctBgwZhNBrJyLi+NIg9trxy5QqhoaHMmTOnxiRr7969jBs37rr2w8PDCQ0N5erVqw6+usah60z3jTfeYMOGDcTGxjJ06FB8fHwAuHDhAt26dbvu+BUrVpCXl8cHH3zA3XffTVhYGGFhYdcdt337do4fP8748ePZvXs33bp14+DBg3h5edGhQwc2bdqEEIK8vDxiY2O5ePGibdbhztRlz1GjRrF+/Xr8/Pxo165djePtsWdgYCC+vr7s2LGDuXPnEh8fz8CBA7l27RqTJ0+mrKzM9vf4+HiOHTtGr169CAoK0vLSnYIz7AmQkJDA008/DUB8fHyN8Xnt2jUqKiqYNGkSKSkp7N69m7w89y+/UJct09LS2LVrF+Xl17+oxR5btmnTBrPZTGpqKvPmzSM+Pp5p06ZRWlqKt7d3jfbPnDnDtm3bOHPmjP6TAiml5j/WbmuSmpoqt27dWuN3OTk50mg0Xness6nUp4ttGvtTly2lVPZs6o+yZ+uypZTa27NF5OlevnyZ2NhYMjMzee2119i+fTs//fQTv//97+nRowc5OTm24MeSJUtYvnw5Hh4eLFmyhDVr1lBeXs4rr7yCtRaO++RBgvNyIauCkQ8++CDLli2jtLSUVatW4e/vz+HDh20Bs7vvvtsW+Ny2bRtGoxFvb28iIyOra2zV9jx9+jTPPvssH3/8MbGxsRQVFREVFQVAamoqCQkJXL16lUceeYRNmzbh5eXFCy+8UKctKzW6hT2dNTZjY2P57rvvWLt2LR9//HGNe724uJhXXnmF7t27M3bsWN5//32ysrIwmUzXBd2q6dTUnrouLwCsXr0af39/0tPT6dq1KwaDgaSkJAICApg8eTKxsbF4eXmxatUqPDw8OHDgwHUL6n5+fjz//PO88sorlJSUkJCQgMFgoE2bNgA1gh9fffUVY8aMobi4mJSUFEaOHElqamqd62zuiCPsCT8HI3NzcwkKCiIwMJBDhw4xfvx4hg8fbguYVQ98pqam8sMPPzBgwADrE124vF+4IY6wZUVFBZ999hkhISGA1a7R0dG2PoKDgwkODmbFihUkJSXx8MMP8/rrr/Of//ynRdkSHDc2Q0JCMJvNeHp6Xnev79+/n7KyMjw8POjZsydLly5lxYoVdQbd9EL3PF0hBM888wydO3dm2bJlHD16lD59+lBYWMjBgwdp37493t7e5Ofn37Cdr776iu7du9O+fXv8/PyYOXMm27dvv+E5nTp1Ij09ne+++84WmXd3HGXPKm6++Wa8vLxITk6uYaPqAbOqwGdZWRmDBg2ie/futpvFnXGELb/99luys7Mxm82kp6fXeczmzZu57777GDt2LHv37uWnn37i8uXLLcqW4LixOWzYMKZPn86lS5euu9fLysoYNmwYeXl5FBYWkpCQwIgRI+oNuumB7p7Gw8MDIQTe3t5V03wKCwuxWCwMHz6co0ePEhQURIcOHQDqXFAvKChg8eLFTJ06FYvFwm233UZcXBwTJ04kPj6eMWPG2IIfBoPB9uQbN24cu3fvpn///vTv3zLeXu4Ie0LNYGRZWRnt2rVj1KhRxMfHA9QImFUFPm+++WZbsCI8PFzT63YGjrDlbbfdxsqVK4mOjqZ///5s374ds9nMDz/8wOHDh+nZsyc7d+6kvLycXr16UVFRQVhYGAaDgZ07d7YYW4Jj7GmxWIiLi+PUqVOMHj36unt97NixrFmzBi8vLy5evMiGDRuYMGECI0eOrBF005MWsabraNxlzQxc35ag7Olo3MWe7mBLULUX7KL6mpi9XL58mTVr1jB79mxKS0uZNWsWJpOJkpISIiMjMZlMXLx40QlqXZum2BKsgbb4+HjKy8sxmUzcf//9ZGRktGpbVqepdj19+rQtR33r1q3ExMS0iM0RzaGptoyNjWX+/PlcuXKFV199leXLl5OZmelgdY1H1+WFuLg4PDw8iIiIYNOmTVy4cAGj0cikSZO49dZbGTBgAOnp6SxatIgXX3yRHj168NxzzwHw1ltvUVRURL9+/UhLSyMgIIA5c+YA2BVsCwwMtO1ECwwM5MqVK24drNDSlvBzoM3T09O2w6pfv34twpbV0dKutYNutYNE7o7WY7R6wK20tJSoqCi2bNnC3Llz9TFAJbrOdPv160d+fr4tf63qKRQSEsLUqVO588476drVWubSYDBw1113kZZmfXFvYmIiHTt2JDc317YY39BXmerBNqPRyIQJEzhw4ADLli1j3rx5DQbeXBmtbVkdi8VCQEAAQIuwZXW0tGvtoJu9AWF3QesxWj3g5kqTAF1nulUpHMnJyZSUlNi2Pnp5eSGEsP0JYDabOXnyJKtWreLzzz/HYDBgsVgwGAwcP34ci8VCUVER7dq1syvY9vbbb3P27FmWLFnCX/7yF9LT05kxY4bmNnAUWtoSagbadu7cyZQpUwBahC2ro6VdawfdqgeJWgJa2rJ2wM3b2xuj0cisWbM0v+7auEUg7cyZMyQmJtqqhjkbdwlUgOvbElq2PavQ0q7uYk93sCVob0+3cLpa4y6DGlzflqDs6WjcxZ7uYEtQ2Qs2mhqxrJ2lsHnzZiIjIzl37hxgLaYTExPDqlWryM/PZ9q0abz//vuOlO5SNNWO8HOGAljrwI4ePdr2f4mJiaxevZqYmBhSUlKYO3cuu3btQkpJdHS07jVLnUVz7Fk9mm40Gpk9e7Yty+Ps2bNMmTKFrKwsCgoKePTRR21J/NXPa0k0x5bVszyqZyIB5OTksHTpUlavXs3p06dZvnw5K1euJDMzE5PJxPjx4x2iv6no7nSNRiNSSmJiYkhISCAqKooTJ04A1p06WVlZrFu3jh9//NG2pa+iogKwRi1NJhMmk4nk5GQAW5ZC3759KSkpISQkhOzsbNtuqu7du9OlSxcKCgpaVD1dR9sRrBkKVVRtMqmiqu7rv//97xp1S6u2Ardp06ZRwThXwxn2rBqLnp6eLFmyhBEjRtgqiAUFBdnWxdu3b8+jjz5a53nuiKNtWTvLo3omEvy87T8gIIBDhw7x8MMPc/HiRTp16sS8efMIDQ3V2AI10d3p9uzZkx07dmAwGCgoKKBbt24cOXIEwLaoXl5ezqFDh5q0JXjQoEEsWrSoRn5eVY3S9u3bt5h6us6wYxU5OTmcOXOGL7/8km+++QagRt3X6nVLW8pWYGfYs3o0/dSpU+Tk5DBgwIAGtVQ/zx1xtC1rZ3lUz0SqzZQpU2xbqz08PNi/f3+dgWEt0X0b8MSJEwkPD8dsNmM2m2nbtq3tKRccHMy7777LyZMniYiIICkpqdFbguPi4sjMzCQqKspWC7aqRun58+fZunVri6in62g7Qs0MBaPRSHR0NEOGDCE+Ph6DwWCr+1q9bukdd9zRIrYCO9qetaPpERERTJ48mXPnzmE2mxk7diz79u3DYrEwb948PvroI9q0aWPLYKg6zx1xtC1rZ3msW7fOlolUe9t/eXm5bWu1r68vX3/9te6vPlKBtDpwl0AFuL4tQdnT0biLPd3BlqACaQqFQtGi0WV5wcfHJ1sI0UWPvu3Bx8cnW28N9uLqtgRlT0fjLvZ0B1uC9vbUZXmhKQghfIEfgF9LKc81cGx74CwwQErpFgNUa4QQY4BoKeV/2XHsJGCxlHK485W5J0KIWCBXSrnSjmPfBk5JKZueM9WCEUJ4AN8BD0kpv2ngWC8gE7hHSpmmhb7m4k7LC/cBRxpyuABSygLgE+B/nK7KfXkc2GTnsXuAPkKIhkPtrRAhhA/wMLDZzlM2AY8JVyoI4FqMBC4DSQ0dKKUsA94DHnO2KEfhTk73cWBjI45XA7sehBAdgXDgb/YcL6W8BmzBjQa2xkwGkqWUZ+w8PhEoA9Q3h7p5HNjYiCjcJuB/hBDeTtTkMNzC6QohfgkEA7sacdphwBMY5hRR7s0MYLeUsjHv9n4XeEQI0TLqDDqWx7D/WwOVzmQT6iF2HUKIAGAi8Fd7z5FSfgecqDzP5XELpwv8AfirlPKqvSdUG9g6v+Tetaic+Tf2WwNSypPAKWCcM3S5K0KIXsB/YV3OagxbgamV8QfFz0wH9kkpG7sTZCNucq+7vNMVQngCj9KImUQ1tgD3CyHce+eDYxkM/AL4ZxPOVbOz65kJxEspSxpzUmWA95/AQ05R5b406ltDNXYAvxVC9HCwHofj8k4XGANkSSn/09gTpZQ/AoeABx2uyn15HHhXSlnRhHM/AEYKIbo6WJNbUhll/wON/NZQDbeZnWmBEOIOoCuwv7HnSimvAB9ifQi6NO7gdJv65KtCLTFUUpl2Nw1rtLfRSCkvY51RPOJIXW7M3UC+lDK5wSPrZi/QSwgxyIGa3JnHgM1SyvImnu8WwXOXdrpCiE7APcC2ZjTz/4C+Kt0JgKnAN1LK5rydzy0GtkY8RtNnuW6Z7uQshBBtsQZ4321GM18DJcBdDhHlJFza6WL9EBKklPlNbaAy3Wkr1q+BrZ3mfmsA+BKQwH83X477IoToAIzHzrS7G/Au1nSn1p4VMglIlVKebmoD7pIV4rJOt6lR9nrYBMys3L3SKhFC9AZ+DexsTjvuMrA14GFgj5QytzmNSCnTgW9xk3QnJ+Koe30rMFkI8QsHtOUUXNbpYk3D8QO+aG5DUsoTwPe07nSnR4G/NSbt7gZsAe4TQvg7oC13xVFOAlr5Q0wI0RMYCnzc3LaklD8Bfwd+39y2nIUrO93HgU1NjLLXRauNFFem3TUnyl6DynSnL2ilWSFCiMFAR+AfDmryQyBUCNHdQe25G48C26WUxQ5qz6XvdZd0ukKIm7A+qTY7sNnWnO70O+CilPLfDmzTpQe2k3mMpqfdXUdlutNHuEG6k6NxQNpdXXwG9BBC/MqBbToMl3S6WIvbfCWl/MFRDUopC2m9RXAaU9zGXvYAvYUQAx3crktTWdxmOo6dEEDrzQoZBRQCRx3VYGXKmctmhbiq03Xkell1NtLKBrYQIhAYS/Oj7DWoTHdqjUVwpgBHm5l2VxdfAaXACAe36+o0triNvbwLRLhiERyXc7pCiD7A7cCnTmj+X4AAfuuEtl2VGcD/a07a3Q1ojUVwHJF2dx2tMSukMu1uAo0obmMvlUVwjgP3Orrt5uJyTpcmFLexl9Y2sB2cdncdUspvgQys+aotnsriNr+hmWl3N2ArMKUVFcGZDnwmpcxxUvsuGXdwKafbzOI29tKaiuD8BvAHPndiH61pm/WjwLbGFrexFynlRawZES6b7uRgnPKtoRo7gGFCiFuc2EejcSmni3XL7wUpZaqzOpBSZgEHaR3pTs0pbmMvHwIjhBDdnNiH7jgpyl4XLjk7czRCiDuBzsABZ/UhpSzCmrXkUlkhruZ0nf3kq6LFz84qi9v8niYWt7GXVlQE526s70BLcXI/nwE9hRC3O7kfvWlucRt7qcoKcRlf5zJChBA3Yy3j2JziNvaym5ZfBKfqnXJnNeirNWSFOG1tvDqtoQhOZXGbh2lecRt7OQIU4UJFcFzG6WKNsn8qpbQ4u6NW8s4vrb41gPWdX+VAqEb9aUrlO+XG4eC0uxvgsulODmIy8B8p5ffO7sgVg+cu4XSdHWWvh0200HSnynfK3QH8nxb9tYJXIz1M498p12SklBnASVpuERyt7/WtwCRXKYKju9OtLOAcDfjigOI2jeBbrO/8WiOEaDEzNCHEI8AynJR2dwOq3vn1auU27haBEGIdMAttnQSV/c0RQrygcb9OQwjRTQjxCjCExr9TrslUvm9tP/CiEEL3B5nuThfr6zn+AFSg7RbdsMq+ZwK9NOzX2fwG69shHhBCdNaw36XAJWAu0JJKaD4E3Ir1QaYJld/8nsO6Oy1cq3414BdYZ7mXgPladVpZgyEEiAB037buCk73EnAz1gVvh+9MuQEHsEbdbwauaNivs7kJ67eG/63M+9SKlVir9nth3UvfUvDAWrR9tlYdVi7XVBXd99WqXw34EegAnAc2aNWplPIYsL6yb92DvcLxW54bKcC6IeJ54CUn7L+2p/9ngbe1COBpQWXZwQFSyngd+m4HPCOljNa6b2chhHgMOFxZbFzrvg3ALVLKHVr37QwqZ/DLgbWVWRpa9/8U1rV5R9fNaJwOvZ2uQqFQtCZcYXlBoVAoWg9SygZ/fHx8srCua7nUj4+PT5Yr66tDb7neGlqKTh8fnyx3+Nyrxqgr3kuurM0eza6mt7Y96/uxa3lBCKHHcmuDCCGQUgpX1VebSr16y2gQd9BZtfnNHXRKKUW1f7vMWHVlbfVRXbOr6a1tz/pQywsKhUKhIZo73by8PEwmE+PGjePy5cu89NJLLF26lMOHDwNw9uxZpkyZQlZWFgBHjhzhiSeeACAuLo7169dTWKhNRlJkZCTx8fE23aNHj7b936lTp/jjH//Ik08+icViISoqiieffJKCggIeeugh3njjDU001tYZGxtLdPTPyQMXLlwgJiaGVatWcfr0aZYvX87KlSspKCjg0UcfJTExUXONtW1ZXFzMn/70J9555x0yMzMxmUyMH28t0Xv69Gnuu+8+TTRevnyZNWvWMHv2bEpLS3n11VdZvnw5mZnWYHf1sVnbftWvTyssFgtLlizh2Weftc34jxw5wssvv8zmzZv59ttveeGFF3jttddITU3FZDIxbdo0TTVWt0vte7365159bNYeA3qRk5PD0qVLWb16te13H3/8MS+//DIJCQlNbrdRSeyrV6/G39+f9PR0unbtisFgICkpiYCAACZPnkxsbCxeXl6sWrUKDw8PDhw4wLFjxwAYOXIkgwcPpkOHDixcuJD8/Hz8/PwoKCigoKCAHj16ABAUFMSUKVMAKCoq4tixY/Tp0weLxYLZbGbIkCF4ed1YtiN0AsyfP992U8XHxzNmzJifDeflRU5ODu3atcPT05Pc3FwqKirw8/MjMDCQ4uJi6/rNDWrAOEPn/Pnzazjd7t2706VLF86fP09SUhIPP/wwr7/+Op6enjz66KOafOYN2XL//v2UlZXh4eFBr169mDdvHleuXKGiooLPPvuMkJAQTXT6+fnx/PPP88orr1BSUkJpaSlRUVFs2bKFuXPn1hib7du3r2G/6tdnD47Qm56ezsiRI0lNTeXEiRMMGjSIoUOHsmPHDjp37szu3btZvnw5MTExBAcH07VrV9q0sW/XuzM+99r3evXPvfrY7NSpk20MNBZH6Qb4/PPPmTVrFnv37uXKlSu0a9eOjIwMlixZgtFoZOLEpm1ua9RMVwjBM888Q+fOnVm2bBlHjx6lT58+FBYWcvDgQdq3b4+3tzf5+fk3bKdqgAD88pe/5KWXXmLfvn3XHff1119z8eJFzGYzly9f5pZbbmHkyJEcOHDjEpyO0llFTk4OZ86c4csvv+Sbb74BIDMzk6effpqgoCDOnj3Lgw8+SHh4OBkZGbz55pv07duXtLQ0TXXWx4wZM+jduzdjx45l7969/PTTT3h42PfRa2HLsrIyhg0bRl5eHoWFhezfv5+wsDC+/fZbsrOzMZvNpKffOE3WUTq/+uorunfvTvv27W/4wGwujtD7m9/8hvT0dL777rsaE5Ho6GguX7583fGffPKJ3d8anDE2a9/r1T/3e+65p8bYrBoDjcURus+dO4fJZKq3/ebSqJmuh4cHQgi8vb1twZbCwkIsFgvDhw/n6NGjBAUF0aFDBwDCwsLqNFxCQgJPP/00ACdPnuS1117j3nvvJT4+nrFjx7Jv3z4sFgsLFixg1KhRSCnp0aMHvr6+7Nixg7lz52qic/v27Rw/fpzx48djNBqJjo5myJAhxMfHc/vtt7Np0yaEEAQGBhIXF0fbtm255557WLt2LefPn29w0DhD5549ezCbzfzwww8cPnyYgQMHsnv3bvLy8igrK6OiooKwsDC8vb356KOPaNOmDcOGDdPVlmPHjmXNmjV4eXnh5+fH119/zQsvvADAypUriY6Opn///k63ZUFBAYsXL2bq1KlYLBa8vb0xGo3MmjXrurE5b968Gvarfn3t2zf8th1H2fXatWv079+f/v37Ex8fz0033cTRo0fp1q0bY8aMYfXq1XTq1AmwLjV162ZfrXlnfO513etVn3v1senr61tjDDQGR+ju2bMnCxcuJCcnh/Xr1+Pn58fVq1f517/+Rd++fXn55Zf51a+a/nZ3lb2gIe6QFQDuoVNlLzQfV9ZWHyp7QaFQKBSNQlOnWz3A0xi0yAZoirba0e5Zs2ZhMpkoKSlh48aNvPTSSxw5ckRXjVAzglw9Ir9lyxaioqIcpq82TdFbO7uldqaDM2iqXatnVmzevJnIyEjOnTvnSGnX0VStsbGxzJ8/v0nBqcbQ3Pvo6tWrREVFERkZqUmWkiPuqcbSpBJ8cXFxeHh4EBERwaZNm7hw4QJGo5FJkyZx6623MmDAANLT01m0aBEvvvgiPXr04LnnngPgrbfeoqioiH79+pGWlkZAQABz5swBqDeSaG82gNbaake7AwMDKSoqAuDSpUssX74co9HI0KFDdbVf9Qhy7Yi8PYNOS721s1vefPPNGpkOrqKzdmZFSEgI+/fvbzCzRg+tVfrMZjOenp4up6/6fZSVlUVQUBCBgYEcOnTI7rQxPe+pxtKkmW6/fv3Iz8+3bWurymMMCQlh6tSp3HnnnXTt2hUAg8HAXXfdZYvkJyYm0rFjR3Jzc21RxYbWZezNBtBDW/Vot9FoZMKECRw4cMD2cKjrIaG1xuo0Jfqqtd6q7Ja6Mh1cRWftzIpBgwaxaNEiW5+upBVg2LBhTJ8+nUuXLrmkvqr7qFevXnh5eZGcnGz3A0wPvc2hSU7XYrFQVlZGcnKyLZ8RrLmrQgjbnwBms5ndu3dz++3Wl5saDAYsFgsDBgywRRWrZodhYWEsXLiQhQsX2p4oRUVFrF27lv3799O7d2+X0lYV7f7pp5+wWCysW7eOjRs3MnjwYDp16sTq1avr/GqspUawRpD37NlDQUGBLSI/YcIEW6bD8ePHXcamYM1umThxIoGBgRiNRkJDQxkyZIhLffa33XYbK1euJDQ0lP79+7NmzRrefvttunTp0qBOrbVaLBbWrFnDp59+ir+/v8vpq30flZWV0a5dO0aNGmWXVq31Qs17qtHYU6DBeljj+f777+W2bduadK49VOpqkj5na6uLxurUQ6OUjddZhZZ6qSwy0hS01imbcS85U2tztUmp/RitrtnV9Na2Z30/KmVMQ9whFQvcQ6dKGWs+rqytPlTKWCVNjQBCzQhw9eg/QEpKCnPnzmXXrl3X1TfQQl/t7ASj0cjs2bO5eNH6FpzExERWr15NTExMjX3a+fn5TJs2jffff18TnfBzNLW8vByTycT9999PRkYGULNmQGFhISaTicjISKSULFmyhPnz53Pq1ClNdcL1dSKq27N6rYCmfvbN0Vk92l87M6F6PQv4uT5IXbUQGoujbFtX1seePXuanK3irHu8eg0TR9dfcNR9f6Nx2hQa5XSNRiNSSmJiYkhISCAqKooTJ04A1pSZrKws1q1bx48//sjSpUtZsWIFFRUVgDUKaDKZMJlMJCcnA1wXAa4e/Qfw9vbG39+f4uLi6+obaKGvKqrat29fSkpKWLJkCSNGjCAvLw+Aw4cPs3DhQv7973/b9mkHBAQghKBDhw41rsWZOsEaTQXw9PRk4cKFBAcH069fP6BmPQt/f38GDhxIbm4uQgjb+lXVriWtdNb+e217BgcHM2PGDEaMGNHgZ+8MnSEhIWRnZ+Pp6Wn7e1Vgp6qeRUFBQY36IFW1EG6++WZb//XhbNvWrm+RnZ1NUVERAQEBmupq6B6vXsOkqv7CxYsXbfUXQkMbflG3s+/7G43TptAop9uzZ0927NiBwWCgoKCAbt262fJQq77ulZeXc+jQIbv2ONeOAFeP/gMMGjQIo9FIRkYGFy9erFHfQAt9UDM74dSpU+Tk5DBgwAAApk2bxp///Gfbon0VXl5evPnmmxQXF9eZa+gMndWxWCw3vLnCw8MJDQ3FYrEQGhrKnDlz6kx/cbbO2tS2Z1WtgIY+e2forB7tryszoaqeRfX6IN27d6+zFkJdONO2dWV9HDx4kLNnz2I2m+udDDhDV0P3ePUaJrVrg9hbf8HZ931t6rvv7aVReboTJ04kPDwcs9mM2Wymbdu2tidGcHAw7777LidPniQiIoKkpKQG9zhXRYCr9tavW7eOs2fPsmTJEuLj4wkODmbXrl2Ul5fTrl07du7cSdu2bQkPr/ut1I7WV3sv/uOPP87kyZM5d+4cZrMZg8FARUUFkyZNYtSoUbZ92vn5+bz22mtcvHixzpmZo3VCzT3uO3futM1sa9cMmDx5Mtu2bePMmTPMnDkTs9lMamoq8+bN01xn7ToR1e0JP9cKyM7OvuFn72idFouFuLg4Tp06xejRo1mzZg2ZmZlERUURHx9fo57FvHnzbPVBunbtWqMWwo1wtm1r17eoKul49epVbrrpJs10NXSPV69hcu3atSbVX3D2fb93794bjtPGogJpGuIOASpwD50qkNZ8XFlbfahAmkKhUCgahV3LCz4+PtlCCPuyvjXEx8cnu+pPV9RXGx8fnwohhMs/6NxBZ9Vn7+qfe5XO6v92Fc2urK0+qmt2Nb217Vkfdi0vKBQKhcIxuPRsRqFQKFoayukqFAqFhiinq1AoFBqinK5CoVBoiHK6CoVCoSHK6SoUCoWGKKerUCgUGqKcrkKhUGiIcroKhUKhIcrpKhQKhYYop6tQKBQaopyuQqFQaIhyugqFQqEhyukqFAqFhiinq1AoFBqinK5CoVBoiHK6CoVCoSHK6SoUCoWGKKerUCgUGqKcrkKhUGiIcroKhUKhIcrpKhQKhYb8fyLKhrwNjw8JAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+EUlEQVR4nO2de1xVVfr/3wsQQcHBS3lLzPGaDTXOVznOF01tMPGSl26jyTebsjQzb99STJ1kSuWU0pGimikvaTNiZfk1fmrqzJR6JsoUZhA1SBNNA5PLAQUkYP3+OHA6IMgBztn7HFjv14uXinuv9dnPWfvZ66znWc8WUkoUCoVCoQ1eegtQKBSKloRyugqFQqEhyukqFAqFhiinq1AoFBqinK5CoVBoiHK6CoVCoSHK6SoUCoWGKKerUCgUGqKcrkKhUGiIcroKhUKhIcrpKhQKhYYop6tQKBQaopyuQqFQaIhyugqFQqEhyukqFAqFhiinq1AoFBqinK5CoVBoiHK6CoVCoSHK6SoUCoWG+OgtQNEy8Pf3zyopKemst44b4efnl11cXNxFbx2K5o1QL6ZUaIEQQrr7WBNCIKUUeutQNG/U8oJCoVBoiHK6CoVCoSHK6So0Z+vWrWRkZPDHP/6Rf/zjH8TFxZGSksKcOXPYtWsXubm5zJw5s9Zzy8vL62w3Pj6edevWUVhYCMDOnTtZt24dGzZsAGDbtm3ExMRw7tw5Jk+eTFZWlvMvTqGoBxVIU2hOZGQk06ZNY/78+Vy7do3Q0FB8fX0JDAykuLiYDh060KdPH9vxhYWFfPjhh2RnZzNt2jQyMjI4fvw4ACNGjGDQoEFYLBbMZjODBw/Gx8c6rFNSUli5ciUzZsxg6NChdO3alczMTIKDg5k8ebIel65QqJmuQnsKCwvx9/cnJyfH9ruBAwdiNBrJyMi47niTyUR2djZPPfUUPXv2rLXNsrIybrnlFkaMGMGBAwcAeOCBBzCZTPj7+/PFF1+QkpJCUlKSay5KoXAQNdNVaM4bb7zB+vXriYuLY8iQIfj5+ZGWlsauXbtqXT5YsWIFeXl5vP/++9x9992Eh4cTHh5e7ZiOHTvi7+/Pjh07mDNnDgkJCQwYMICffvqJSZMmMXbsWABKSkrIy8tj3759WCwW5s+fr8k1KxRVqJQxhSbUlTJ2/PhxUlJSiIyMtP0uNzeXd955h8WLF2spUaWMKTRBOV2FJrgqT1dKSVRUFMXFxcyfP58OHTpw33338c9//tN2zJ49e/j88895+umnee+998jKymL9+vW1aVROV+Fy1PKCQjdWrVpFYGAg6enpdOnSBYPBwNGjRwkKCmLSpEnExcXh4+NDdHQ0Xl5eHDhw4LoAmhACi8VCWVkZnTp14m9/+xujR4+29ZGdnU1RURFBQUH06NGDpUuXsmLFCr0uWaFQgTSFfggheOaZZ7j55ptZtmwZx44do3fv3hQWFnLw4EHatWuHr68v+fn5dbZx9epVwsLCmD17Nnv37uXs2bN88cUXfP311wAcPHiQc+fOYTabKSoqIjExkeHDh2t0hQrF9aiZrkI3vLy8EELg6+tb9dWewsJCLBYLw4YN49ixYwQHB9O+fXuAWgNorVq1wmw2k5qayty5c/n9739PTEwMgwcPJiEhgalTpwJw7do127LC+PHjGT16NEKolQSF9qg1XYUmqNoLCoUVtbygUCgUGqKcrsIjiImJadR5Dz30EG+88QYAr776KsuXLyczM5NPPvmEtWvXcuLECWfKVCjqRa3pKjQlPj4eLy8vIiMj2bhxIxcvXsRoNDJx4kRuvfVW+vfvT3p6OgsXLuTFF1+ke/fuPPfccwC89dZbFBUV0bdvX9LS0ggKCmL27NkAtWY2gHXTRHFxMVJKSktLiYqKYsuWLSQnJ3P77bfbtgwrFFqhZroKTenbty/5+flIKZFSkpmZCUBoaChTpkzhzjvvpEsXax1xg8HAXXfdRVpaGgBJSUl06NCB3NxcW5ZDfevEb775Jn369CEtLa1a4KyiooL58+ezbds2F12pQlE76jGv0JSqnNrk5GRKSkooLS0FwMfHByGE7U8As9nMqVOniI6O5rPPPsNgMGCxWDAYDJw4cQKLxUJRURFt27atNbOhqKiI9evXc+HCBcLDw/H19cVoNDJz5kxatWrFunXrGDx4sOY2ULRsVPaCQhMamr1w9uxZkpKSbClfWqCyFxRaoJyuQhNUyphCYUWt6SrcgsZmJ1y5coXVq1cza9YsSktLMRqNzJo1i0uXLgFUK45eWFiIyWRi0aJFAMTFxTFv3jyuXr3qtOtQKOpDOV2FphiNRqSUxMbGkpiYSFRUFCdPngRg8+bNZGVlsXbtWn744QdbnYSKigrAmqFgMpkwmUwkJycDEBAQwPPPP0+fPn0oKSlhyZIlDB8+nLy8PIBqxdEDAwMZMGAAubm5gDV4l52djbe3tw6WULRUlNNVaEqPHj3YsWMHBoOBgoICunbtypEjRwBsAbTy8nIOHTrkUO0FgC+//JJu3brRrl07Tp8+TU5ODv379weuL44eERFBWFgY165dY+jQoUybNo3Lly+77oIVihqo7AWFpkyYMIGIiAjMZjNms5nWrVvbZrIhISFs2rSJU6dOERkZydGjR+utvVBQUMDixYuZMmUKFouFxx9/nEmTJnH+/HnMZjMhISG24uhnz55l27ZtnD17loceeoh169Zx+vRpRo0apbkdFC0XFUhTaIIKpCkUVtTygsKlCCuR9R/pHgghWumtQdG8UcsLCpchhOgBvAX08PPzyxFCdNRb043w8/MrLSkp+VoI8ZiU8qjeehTNEzXTVTgdIYSXEOIpIBlIAgYXFxd3klIKd/4pKSnxA14BdgshjEIIf10NqWiWqDVdhVMRQvQD3gZ8gZlSyjSdJTUYIcTNQBzwG+AJKeXnOktSNCPUTFfhFIQQPkKIxcC/gI+AYZ7ocAGklJeklFOB54C/CiHeFEK001uXonmgnK6iyQgh7gS+BO4BQqWU66WU5TrLajJSyv8DfoU19nFcCDFOZ0mKZoBaXlA0GiFEa2A5MAuIAja5fV5YIxFC/A74C/AFsEBKqXZUKBqFmukqGoUQ4rdYA2UhwK+llBubq8MFkFL+HbgDuASkCiGmCvVmS0UjUDNdRYMQQgQALwG/B+YDHzRnZ1sbQggDsBH4FpgjpbygsySFB6FmugqHEUKMBlKB9sCvpJTvtzSHCyCl/BJrZkMykCKEeELNehWOoma6inoRQrQH1gG/A2ZLKffoLMltEEKEYJ31FmJNLzutsySFm6NmuoobIoSYAhwHirDObpXDtUNKmQr8Fvh/wJdCiEVCCFUrUlEnaqarqBUhRBfgNeBO4HEp5SGdJbk9Qog+wDuAP1abHddZksINUTNdRTUqC9Q8Avwba6DoTuVwHUNK+S1wN7AB+KcQ4gUhhK/OshRuhprpKmwIIXoCfwY6Y52pHdNZkscihLgFa7GfnsBjUsojOktSuAlqpquoKlDzNHAUOIh1V5lyuE1ASvk9cC+wGvhECLFWCNFGZ1kKN0DNdFs4Qoj+WL8OC6yz21M6S2p2CCFuAkyAAWuGwz/1VaTQEzXTbaEIIVoJIZYCZmA7MFw5XNcgpfxRSjkdWAhsEUL8WQjxC711KfRBOd0WiBBiENYCNaOAwVLK16SUFTrLavZIKT/BWkBHYi2gc6/OkhQ6oJYXWhBCCD/gj8BMrGULt7TEHWXugBBiFNa6w18B86WUP+osSaERaqbbQhBChAEpQD/gDinlu8rh6kfluu4dwAWsBXQeVluJWwZqptvMEUIEYo2g3w88I6XcobMkRQ2EEKFYg5lngacqMx8UzRQ1023GCCHGYC1QE4B1C69yuG6IlPIr4L+AI0CyEGKWEELdm80UNdNthgghOgCxwEjgSSnlPn0VKRxFCHE71llvMdb0sm91lqRwMupp2kwQQngLIT4UQjyKtUCNBevsVjlcD6LyvXJhwC4gSQjxrBDig8qXZSqaAWqm20wQQkQBS4BcYIaU8rDOkhRNRAjxS+A9rMHPz6WU9+ssSeEE1Ey3+bAM8AMKgO901qJwDt9hXWZoBUypXDZSeDhqpttMEEJ4qQ0OzRf1+TYflNNVKBQKDfHRW4C74u/vn1VSUtJZbx314efnl11cXNxFbx0KbfGE8anGZu2omW4dCCE8YsOWEAIppdrJ1MLwhPGpxmbtqECaQqFQaIhyug6wdetWMjIy+OMf/8g//vEP4uLiOHfuHJMnTyYrK4vz58+zZs0a5s+fT2lpKVOnTq21nfLy8jr7iIuLIyYmBoDS0lImTpxIVlaW7f+PHDnCE0884dwLUzQLahufKSkpzJkzh127dpGbm8vMmTNrPbeuMZmXl4fJZGLs2LFcuXLF9vtt27YRExPDxYsXiY2NJTo6mszMTEwmE+PGjXPJ9TU31JquA0RGRjJt2jTmz5/PtWvXCA0NJTg4mMmTJwPQo0cPli5dyooVK/D19eXXv/617dxr166xc+dOvvvuO8aNG0dJSQn/+te/ABg0aBAjRowAYN68eTan+9e//pWIiAhbG0VFRRw/fpzevXtrc8EKj6K28enr60tgYCDFxcV06NCBPn362I4vLCzkww8/JDs7m2nTppGRkcHx49Z3aI4YMYJBgwbRvn17FixYQH5+PgEBAQCkpaXRtWtXMjMz6datG507d+bChQv07NmTuXPncvXqVV2u39NQM10HKCwsxN/fn5ycnDqPSUxMZPjw4df9/t133yUlJYU//OEP3HHHHQ71l5qayuHDh0lKSgLgq6++4tKlS5jN5mqzX4UCah+fAwcOxGg0kpGRcd3xJpOJ7OxsnnrqKXr27FlnuydPnmTgwIG2f3/xxRekpKTYxuX06dPp1asXAPv37yc8PNxZl9SsUTNdB3jjjTdYv349cXFxDBkyBD8/P/Ly8ti3bx8Wi4V7772X9evXM378eEaPHl3t3CeffJKioiJ27NjB7bffTmhoKKGhodf1sX37dsxmM99//z2xsbFs3ryZoUOHkpCQwNSpUxk5ciRSSrp0UcFgRXVqG59paWns2rWr1uWDFStWkJeXx/vvv8/dd99NeHh4rQ4zMTGRp59+GoCEhATbEkVJSQkpKSns3r2bvLw8wDoxeOGFF1x4lc0Hlb1QB3VFh48fP05KSgqRkZG1nldaWspLL73En/70J1dLBFSEuKXSkPGZm5vLO++8w+LFi7WUqMZmHSinWweuSsk5c+YMzz77LB999BGvvvoqOTk5PPHEE/Ts2ZPU1FQSExO5du0af/jDH/j444/Zt28fu3fvJi4ujm+//ZY1a9bQtm1be51qYLdAnD0+8/LyePfdd/n0009JSEhgzZo1lJaWEh0dTWBgIGazmSNHjnDixAmeeeYZ2zh95JFH2LhxIz4+PqxcubKmRjU2a0EtLzjIqlWrCAwMJD09nS5dumAwGDh69ChBQUFMmjSJuLg4fHx8iI6OxsvLiwMHDlwXnKioqODTTz+1LS+UlpYSFRXFli1bmDNnDiEhIYSEhLBixYrrghOhoaGYzWa8vb11s4HCPXHG2LQPnJWWlhIcHEzHjh05dOgQ48aNIywsjDZt2tCrV69q4/To0aM8/PDDvP7661y9erXahEBROyqQ5iBCCJ555hluvvlmli1bxrFjx+jduzeFhYUcPHiQdu3a4evrS35+fp1tfPPNN2RnZ2M2m0lPT6e2t7Ns3ryZ++67D6genBg6dCjTpk3j8uXLLrk+hefijLEJPwfObrrpJnx8fEhOTsbH5+d52d69exk7dizw8zgdM2YMe/fu5ccff8TLS7kTR1AzXQfx8vJCCIGvr2/V1yYKCwuxWCwMGzaMY8eOERwcTPv27QFqDU7cdtttrFy5kpiYGPr164evry9Go5GZM2eSkJBAjx492LlzJ+Xl5QwaNMgWnLBYLMTHx3P69GlGjRqlx+Ur3BhnjE2oHjgrKyujbdu2jBw50hbMLS0txdfXF7PZbBunPXv2pKKigvDwcPz9/TW9bk9FrenWgSdsswS1btZS8YTxqcZm7ajvAwqFQqEhyum6iKrdZQ3lzJkztjXdzZs3s2jRIs6fP8+GDRt46aWXOHLkiDNlKlowjRmjNbcHb926ldjYWC5cuOAChc0TtaZbD/Hx8Xh5eREZGcnGjRu5ePEiRqORiRMncuutt9K/f3/S09NZuHAhL774It27d+e5554D4K233qKoqIi+ffuSlpZGUFAQs2fPBnAouyE0NJT9+/fj4+PD5cuXWb58OUajkSFDhuhjDIVbouUYrbk9ODExEYPBQKtWrXS7fk9DzXTroW/fvuTn5yOlREpJZmYmYHWIU6ZM4c4777TtEjMYDNx1112kpaUBkJSURIcOHcjNzbVFk2+0Dlczu2HgwIEsXLiQzMxMW6ZDbRkPipaNlmMUqm8PDggIYMaMGWzfvt2FV9i8UE63HiwWC2VlZSQnJ1NSUkJpaSkAPj4+CCFsfwKYzWZ2797N7bffDlgHuMVioX///rZoclFREWCNIC9YsIAFCxYwaNAg4OfshrCwMPr168fq1at5++236dy5M506dWLVqlUqe0FxHVqOUbBmOUyYMAGwjtn4+HjCwsK0vGSPRmUv1EFDo8Nnz54lKSmpzrKOrkJFiFsmjcle0HqMqrFZO8rp1oEnpOSAGtgtFU8Yn2ps1o5aXmgkjc1OAFi0aBEJCQmUl5cTFRXFokWLKCwsBGDnzp2sW7eODRs2cOrUKdauXcv69esB2LNnD1FRUU7Rr2i+NGVsxsXFMW/ePK5evYrJZOL++++3lYdMTU1lzZo1rFy5ksLCQkwmE4sWLUJKyZIlS5g3bx6nT5921mU0W5TTrQej0YiUktjYWBITE4mKiuLkyZOANaUrKyuLtWvX8sMPP9gKmVdUWN+UfeDAAUwmEyaTieTkZFub8+bNA6zVn4KDgzEYDBw6dAiAlJQU/vd//5eDBw8yYMAAvL29KS4uJjs7m6KiIoKCgrQ1gMJtccXYDA0NJTs7G29vbxYsWEBISAh9+/YFICQkhKVLl1JeXk5gYCADBgwgNzcXIYRtLbhTp07aG8LDUE63Hnr06MGOHTswGAwUFBTQtWtXW65sVXCivLycQ4cOObzHvYra9rg/8MADmEwm25bKhQsXEhAQwMGDBzl37hxms9kW6FC0bFwxNu1rfFgsluse8va1QSIiIggLC8NisRAWFsbs2bNtBc4VdaPydOthwoQJREREYDabMZvNtG7d2jZbCAkJYdOmTZw6dYrIyEiOHj3q0B737du3c+LECcaNG3fdHvcBAwbw008/MWnSJD7//HMOHjyIj48Pc+fOBayv/2nTpo12BlC4Lc4emzVrfOzcudP2SqqatUHat2/Ptm3bOHv2LDNmzMBsNpOammobp4q6UYG0OvCEQAWoYEVLxRPGpxqbtaOWFxQKhUJD1PJCHfj5+WULITrrraM+/Pz8svXWoNAeTxifamzWjlpeaCRCiJuBo8BTUspEJ7f9AvA74HdSyp+c2baiZSCEeB24BZjizHUIIUR/4DAwVkr5tbPabUmo5YVGIITwBv4GbHW2w63kRaAIWO2CthXNHCHEw0AE8KizF36llN8ATwEfCCE6OLPtloKa6TYCIcRLwG+BMVLKMhf10Qn4GlgopfzYFX0omh9CiIHA58BoKWWKC/uJBfoD90opK1zVT3NEzXQbiBBiPDADmOYqhwsgpbwMPAT8WQjR11X9KJoPQohAYAew2JUOt5IlwC+ApS7up9mhZroNQAhxK/AlcJ+U0qxRn3OAWcBvpZRqV4SiVoR1N8Q24IqUcqZGfXYHjgD/I6X8uxZ9NgeU03UQIYQf1gDCX6WUr2rYrwDeA0qBx9w+OVOhC0KIZ4DHgP+WUhZr2O/dwF+BIVLK77Xq15NRTtdBhBBvAZ2AB7V2fEKItsBXwKtSyne07Fvh/gghhgK7sH4b0rzijBDieWA8MFJl29SPcroOIIT4H2A51qd5gU4aBgCHsAbvjumhQeF+CCFuwpq6OFdKuUsnDV7A/wHfSikX6qHBk1BOtx6EECHAP4C7pZSpOmt5CFgDDJZS5umpRaE/lamLe4BjUkpda34KIdpjdf5LpJQf6KnF3VFO9wYIIdphDRS8JKXcqrceACHEeqAXMFml6rRshBDRwF1Y08NclknTAD3/BewFhlXm8ypqQTndOqgMYH0AXJZSztZbTxVCCF/gM2CXlLLx1aoVHo0QIgJ4B+u3niy99VQhhHgSmAcYpJRX9dbjjiinWwdCiIXAdKxP7RK99dgjhLgF6wz8YSnlP/XWo9AWIURPrKmLD0opD+mtx57KycpmrHsAHlHZNtejnG4tCCGGYU0yN0gpz+osp1aEEOHAFqzBvQt661FogxCiNdaA6nYp5Tq99dSGEKINkAS8KaV8U2897oZyujWorNx0FHhSSrlbbz03QgixHOse+1EqVadlIISIB7oAD7jzLLJyF6UZGC+lPKK3HndCbQO2Qwjhg3VXzyZ3d7iVrAYsgFrbbQFUFrIZjQdskpFSZgCzsRbG6ai3HndCzXTtEEKsBoYAEVLKcr31OEJlpaejwLNSyh1661G4BiHE7VgDqL+TUv5HZzkOI4RYCwwEJqhsGytqpluJEOJeIBJrcMojHC6AlDIXeBB4UwjRT289CudjV8jmWU9yuJUsBQKBZXoLcRfUTBcQQvwS+AJr7usXeutpDEKI2cAcYKgqjNN8qMwGSAAsUson9dbTGIQQ3bCWKZ0hpdyvtx69afFOt7KQjRnYIqVcr7eexlJ5c24BKnBB8WqFPggh5mEtJRrmbqmLDUEIMRJrvCRUSnleXzX6opyuEH/BWhd0qqc7qsrCOF8CcVLKv+itR9E0hBC/BXZi/fbync5ymowQIgqYBIyQUpbqrUcvWrTTFULMwLrmNERKWai3Hmdg9w6rCCnlUb31KBqHK9/BpxeVhXF2At9JKefrLEc3WqTTFUIMBwKwfh0fKaVM01mSUxFCPAC8jPVdVmcq03cUHkBl0OwerJ/dV1LK53WW5FQqC+N8DUQDRVLKD3WWpDkt1ekeAG4H3pBSvqi3HmdTOaPYBgwC3pdSLtdZksJBhBD3Yc27zsdaxrPZVZOrvMZ3AAl08vRlvYbS4lLGKgNOw4COQG+d5bgKP6yVyH4JPKCzFkXDeADoA3QGbtZZi6voBfgCHWi+92CdtDinW8nnWF9r8qjeQlxBZcqYAWvecZLOchQN4yTWr959mmt5xMqaEQOA3YDuJSm1pkUuLygUCoVetNSZrkKhUOiCjx6d+vv7Z5WUlHTWo29H8PPzyy4uLu6itw5HcHdbgrKns/EUe3qCLUF7e+qyvCCEcOuApRACKaXQW4cjuLstQdnT2XiKPT3BlqC9PdXygkKhUGiIcroKhUKhIbqs6VaxdetWhg4dytatWxk5ciTHjx9n1KhR/P3vfycpKYk33niDxYsX884771x3bnl5Od7e3rW2u2jRIkJDQ5k6dSoAp06dIjExkVatWjFhwgTeffddsrKyePnll5k9ezYTJkwgMjLSpdeqBbXZc/r06axdu5aAgACeeuqpRtkzPj6ekpISnnzySQIDA9m5cyenT58mKCiIjh072v7ev39/Pv/8cwICApg/3/N3edZmz3nz5rFnzx4+//xzFi9e3Ch7RkdHU1xczLJlywgMDCQrK4u3336bAQMG0LdvX/7yl78QERHBr371KzZu3IiPjw8rV6508dW6ltpsedddd9muddiwYQ22pZSSqKgoiouLmT9/Pr1798ZsNnPkyBFOnDjBnDlzbO2PGjWKDRs2cO7cOWJjY7W45DrR1elGRkYybdo05s+fz7Vr1wgNDSUkJIQuXbrQqlUrOnToQJ8+fWzHFxYW8uGHH5Kdnc20adPIyMjg+PHjAIwYMYJBgwYBMG/ePJKSfk5PHTBgAHv27KG4uBgfHx9ycnJo27YtXl5etG/fnqKi5lEJsTZ7fvbZZ8ycOZO9e/fSunXrBtvTYrFgNpsZPHgwPj7W4ZKSksLKlSuZMWMGvXr1sv398ccf57//+7+Jjo7W5fqdTW32zM7OpqioiKCgoEaNz5ycHG655RYMBgOHDh1i3LhxfPDBBwQGBgLg6+tLYGAgxcXFHD16lIcffpjXX3+dq1ev0rZtW13s4Axqs6X9tTbGlkIILBYLZWVldOrUCYCwsDDatGlDr169qrUfGBjIgAEDSElJ0ePyq6Hr8kJhYSH+/v7k5ORU+/3HH3/Mfffdd93xJpOJ7OxsnnrqKXr27NmgvhYuXEhAQACZmZk8/fTTBAcH4+Pjw5tvvklxcTGFhZ5f76Yue9aFI/YsKyvjlltuYcSIERw4cACABx54AJPJhL+/f7W/A8TGxvL4448754J0pjZ7Hjx4kHPnzmE2m697WDd2fP7000/cc889pKWlMXDgQIxGIxkZGYwZM4a9e/fy448/4uXl2SuBtdnS/lpr4ogtr169SlhYGLNnz642ydq7dy9jx469rv2IiAjCwsK4du2ak6+uYeg6033jjTdYv349cXFxDBkyBD8/PwAuXrxI165drzt+xYoV5OXl8f7773P33XcTHh5OeHj4dcdt376dEydOMG7cOHbv3k3Xrl05ePAgPj4+tG/fno0bNyKEIC8vj7i4OC5dukRAQIDLr9fV1GbPkSNHsm7dOgICAq6bKTliz44dO+Lv78+OHTuYM2cOCQkJDBgwgJ9++olJkyZRVlZm+3tCQgLHjx+nZ8+eBAcHa3npLqE2ez744IMAXLt2jTZt2lQ73lF7Xrhwgffee49ly5aRkJDAxIkT2bRpE23atCEtLY1du3ZRXl5OWVkZFRUVhIeH2x5qnkpttrS/1po4YstWrVphNptJTU1l7ty5JCQkMHXqVEpLS/H19a3W/tmzZ9m2bRtnz57Vf1IgpdT8x9ptdVJTU+XWrVur/S4nJ0cajcbrjnU1lfp0sU1Df2qzpZTKno39UfZsWbaUUnt7Nos83StXrhAXF0dmZiavvfYa27dv58cff+T3v/893bt3JycnxxZMWrJkCcuXL8fLy4slS5awevVqysvLeeWVV7DWwvGcPEhwXS5kVTDywQcfZNmyZZSWlhIdHU1gYCCHDx+2BczuvvtuW+Bz27ZtGI1GfH19WbRokb3GFm3PM2fO8Oyzz/LRRx8RFxdHUVERUVFRAKSmppKYmMi1a9d45JFHbIGzF154oVZbVmr0CHu6amzGxcXx7bffsmbNGj766KNq93pxcTGvvPIK3bp1Y8yYMbz33ntkZWVhMpmuC7rZ6dTUnrouLwCsWrWKwMBA0tPT6dKlCwaDgaNHjxIUFMSkSZOIi4vDx8eH6OhovLy8OHDgwHUL6gEBATz//PO88sorlJSUkJiYiMFgoFWrVgDVgklffvklo0ePpri4mJSUFEaMGEFqaionT55k4MCBeprCKTjDnvBzMDI3N5fg4GA6duxoC/wMGzbMFjCzD3ympqby/fff079/f+sTXbi9X7ghzrBlRUUFn376KaGhoYDVrjExMbY+QkJCCAkJYcWKFdUCZ//5z3+alS3BeWMzNDQUs9mMt7f3dff6/v37KSsrw8vLix49erB06VJWrFhRa9BNL3RfnRdC8Mwzz3DzzTezbNkyjh07Ru/evSksLOTgwYO0a9cOX19f8vPzb9jOl19+Sbdu3WjXrh0BAQHMmDGD7du33/CcTp06kZ6ezrfffmuLzHs6zrJnFTfddBM+Pj4kJydXs5F9wKwq8FlWVsbAgQPp1q2b7WbxZJxhy2+++Ybs7GzMZjPp6em1HrN582buu+++aoGzK1euNCtbgvPG5tChQ5k2bRqXL1++7l4vKytj6NCh5OXlUVhYSGJiIsOHD68z6KYHunsaLy8vhBD4+vpWTfMpLCzEYrEwbNgwjh07RnBwMO3btweodUG9oKCAxYsXM2XKFCwWC7fddhvx8fFMmDCBhIQERo8ebQsmGQwG25Nv7Nix7N69m379+tGvX/N4e7kz7AnVg5FlZWW0bduWkSNHkpCQAFAtYFYV+LzppptswYqIiAhNr9sVOMOWt912GytXriQmJoZ+/fqxfft2zGYz33//PYcPH6ZHjx7s3LmT8vJyevbsaQucGQwGdu7c2WxsCc6xp8ViIT4+ntOnTzNq1Kjr7vUxY8awevVqfHx8uHTpEuvXr2f8+PGMGDGiWtBNT5rFmq6z8ZQ1M3B/W4Kyp7PxFHt6gi1B1V5wCPs1MUe5cuUKq1evZtasWZSWljJz5kxMJhMlJSUsWrQIk8nEpUuXXKDWvWmMLcEaaEtISKC8vByTycT9999PRkZGi7alPY2165kzZ2w56lu3biU2NpYLFy44U5rH0VhbxsXFMW/ePK5evcqrr77K8uXLyczMdLK6hqPr8kJ8fDxeXl5ERkayceNGLl68iNFoZOLEidx6663079+f9PR0Fi5cyIsvvkj37t157rnnAHjrrbcoKiqib9++pKWlERQUxOzZswEcCrZ17NjRltzesWNHrl696tHBCi1tCT8H2ry9vVmwYAH5+fn07du3WdjSHi3tWjPoVjNI5OloPUbtA26lpaVERUWxZcsW5syZo48BKtF1ptu3b1/y8/Nt+WtVT6HQ0FCmTJnCnXfeSZcu1jKXBoOBu+66i7Q064t7k5KS6NChA7m5ubbF+Pq+ytgH24xGI+PHj+fAgQMsW7aMuXPn1ht4c2e0tqU9FouFoKAggGZhS3u0tGvNoJujAWFPQesxah9wc6dJgK4z3aoUjuTkZEpKSigtLbWK8vFBCGH7E8BsNnPq1Cmio6P57LPPMBgMWCwWDAYDJ06cwGKxUFRURNu2bR0Ktr399tucO3eOJUuW8Je//IX09HSmT5+uuQ2chZa2hOqBtp07dzJ58mSAZmFLe7S0a82gm32QqDmgpS1rBtx8fX0xGo3MnDlT8+uuiUcE0s6ePUtSUpKtapir8ZRABbi/LaF527MKLe3qKfb0BFuC9vb0CKerNZ4yqMH9bQnKns7GU+zpCbYElb1go7ERy5pZCps3b2bRokWcP38esBbTiY2NJTo6mvz8fKZOncp7773nTOluRWPtCD9nKADk5eUxatQo2/8lJSWxatUqYmNjSUlJYc6cOezatQspJTExMbrXLHUVTbGnfTTdaDQya9YsW5bHuXPnmDx5MllZWRQUFPDoo4/akvjtz2tONMWW9lke9plIADk5OSxdupRVq1Zx5swZli9fzsqVK8nMzMRkMjFu3Din6G8sujtdo9GIlJLY2FgSExOJiori5MmTgHWnTlZWFmvXruWHH36wbemrqKgArFFLk8mEyWQiOTkZwJal0KdPH0pKSmw1UKt2U3Xr1o3OnTtTUFDQrOrpOtuOYM1QqKJqk0kVhw8fZsGCBfz73/+uVre0aitwq1atGhSMczdcYc+qsejt7c2SJUsYPnw4eXl5AAQHB9vWxdu1a8ejjz5a63meiLNtWTPLwz4TCX7e9h8UFMShQ4d4+OGHuXTpEp06dWLu3LmEhYVpbIHq6O50e/TowY4dOzAYDBQUFNC1a1eOHDkCYFtULy8v59ChQ43aEjxw4EAWLlxYLT9v+vTp9OrVi3bt2jWberqusGMVOTk5nD17li+++IKvv/4agKlTp/LnP/+Z0tLSanVLm8tWYFfY0z6afvr0aXJycujfv3+9WuzP80ScbcuaWR72mUg1mTx5crWaxPv37681MKwlum8DnjBhAhEREZjNZsxmM61bt7Y95UJCQti0aROnTp0iMjKSo0ePNnhLcHx8PJmZmURFRdlqwe7evZu8vDwuXLjA1q1bm0U9XWfbEapnKBiNRmJiYhg8eDAJCQkYDAYqKiqYOHFitbqld9xxR7PYCuxse9aMpkdGRjJp0iTOnz+P2WxmzJgx7Nu3D4vFwty5c/nwww9p1aqVLYOh6jxPxNm2rJnlsXbtWlsmUs1t/+Xl5dVqEn/11Ve88MILmtvAHhVIqwVPCVSA+9sSlD2djafY0xNsCSqQplAoFM0aXZYX/Pz8soUQnfXo2xH8/Pyy9dbgKO5uS1D2dDaeYk9PsCVob09dlhcagxDCH/ge+LWU8nw9x7YDzgH9pZQeMUC1RggxGoiRUv6XA8dOBBZLKYe5XplnIoSIA3KllCsdOPZt4LSUsvE5U80YIYQX8C3wkJTy63qO9QEygXuklGla6GsqnrS8cB9wpD6HCyClLAA+Bv7H5ao8l8eBjQ4euwfoLYSoP9TeAhFC+AEPA5sdPGUj8Jhwp4IA7sUI4ApwtL4DpZRlwLvAY64W5Sw8yek+DmxowPFqYNeBEKIDEAH8zZHjpZQ/AVvwoIGtMZOAZCnlWQePTwLKAPXNoXYeBzY0IAq3EfgfIYSvCzU5DY9wukKIXwIhwK4GnHYY8AaGukSUZzMd2C2lzGvAOZuAR4QQzaPOoHN5DMe/NVDpTDaiHmLXIYQIAiYAf3X0HCnlt8DJyvPcHo9wusAfgL9KKa85eoLdwNb5JffuReXMv6HfGpBSngJOA2NdoctTEUL0BP4L63JWQ9gKTKmMPyh+ZhqwT0rZ0J0gG/CQe93tna4Qwht4lAbMJOzYAtwvhPDsnQ/OZRDwC+CfjThXzc6uZwaQIKUsachJlQHefwIPuUSV59Kgbw127AB+K4To7mQ9TsftnS4wGsiSUv6noSdKKX8ADgEPOl2V5/I4sElKWdGIc98HRgghujhZk0dSGWX/Aw381mCHx8zOtEAIcQfQBdjf0HOllFeBD7A+BN0aT3C6jX3yVaGWGCqpTLubijXa22CklFewzigecaYuD+ZuIF9KmVzvkbWzF+gphBjoRE2ezGPAZilleSPP94jguVs7XSFEJ+AeYFsTmvl/QB+V7gTAFOBrKWVT3s7nEQNbIx6j8bNcj0x3chVCiNZYA7ybmtDMV0AJcJdTRLkIt3a6WD+ERCllfmMbqEx32or1a2BLp6nfGgC+ACTw302X47kIIdoD43Aw7e4GbMKa7tTSs0ImAqlSyjONbcBTskLc1uk2NspeBxuBGZW7V1okQohewK+BnU1px1MGtgY8DOyRUuY2pREpZTrwDR6S7uRCnHWvbwUmCSF+4YS2XILbOl2saTgBwOdNbUhKeRL4jpad7vQo8LeGpN3dgC3AfUKIQCe05ak4y0lAC3+ICSF6AEOAj5ralpTyR+DvwO+b2parcGen+ziwsZFR9tposZHiyrS7pkTZq1GZ7vQ5LTQrRAgxCOgA/MNJTX4AhAkhujmpPU/jUWC7lLLYSe259b3ulk5XCNEG65NqsxObbcnpTr8DLkkp/+3ENt16YLuYx2h82t11VKY7fYgHpDs5Gyek3dXGp0B3IcSvnNim03BLp4u1uM2XUsrvndWglLKQllsEpyHFbRxlD9BLCDHAye26NZXFbabh3AkBtNyskJFAIXDMWQ1Wppy5bVaIuzpdZ66X2bOBFjawhRAdgTE0Pcpejcp0p5ZYBGcycKyJaXe18SVQCgx3crvuTkOL2zjKJiDSHYvguJ3TFUL0Bm4HPnFB8/8CBPBbF7TtrkwH/l9T0u5uQEssguOMtLvraIlZIZVpd+NpQHEbR6ksgnMCuNfZbTcVt3O6NKK4jaO0tIHt5LS765BSfgNkYM1XbfZUFrf5DU1Mu7sBW4HJLagIzjTgUylljovad8u4g1s53SYWt3GUllQE5zdAIPCZC/toSdusHwW2NbS4jaNIKS9hzYhw23QnJ+OSbw127ACGCiFucWEfDcatnC7WLb8XpZSprupASpkFHKRlpDs1pbiNo3wADBdCdHVhH7rjoih7bbjl7MzZCCHuBG4GDriqDyllEdasJbfKCnE3p+vqJ18VzX52Vlnc5vc0sriNo7SgIjh3Y30HWoqL+/kU6CGEuN3F/ehNU4vbOEpVVojb+Dq3ESKEuAlrGcemFLdxlN00/yI4Ve+UO6dBXy0hK8Rla+P2tIQiOJXFbR6macVtHOUIUIQbFcFxG6eLNcr+iZTS4uqOWsg7v7T61gDWd36VA2Ea9acple+UG4uT0+5ugNumOzmJScB/pJTfubojdwyeu4XTdXWUvQ420kzTnSrfKXcH8H9a9NcCXo30MA1/p1yjkVJmAKdovkVwtL7XtwIT3aUIju5Ot7KAcwzgjxOK2zSAb7C+82u1EKLZzNCEEI8Ay3BR2t0NqHrn16uV27ibBUKItcBMtHUSVPY3Wwjxgsb9ugwhRFchxCvAYBr+TrlGU/m+tf3Ai0II3R9kujtdrK/n+ANQgbZbdMMr+54B9NSwX1fzG6xvh3hACHGzhv0uBS4Dc4DmVELzIeBWrA8yTaj85vcc1t1pEVr1qwG/wDrLvQzM06rTyhoMoUAkoPu2dXdwupeBm7AueDt9Z8oNOIA16n4TcFXDfl1NG6zfGv63Mu9TK1Zirdrvg3UvfXPBC2vR9lladVi5XFNVdN9fq3414AegPXABWK9Vp1LK48C6yr51D/YK5295bqAA64aI54GXXLD/2pH+nwXe1iKApwWVZQf7SykTdOi7LfCMlDJG675dhRDiMeBwZbFxrfs2ALdIKXdo3bcrqJzBLwfWVGZpaN3/U1jX5p1dN6NhOvR2ugqFQtGScIflBYVCoWg5SCnr/fHz88vCuq7lVj9+fn5Z7qyvFr3lemtoLjr9/PyyPOFzrxqj7ngvubM2RzS7m96a9qzrx6HlBSGEHsut9SKEQEop3FVfTSr16i2jXjxBZ9XmN0/QKaUUdv92m7Hqztrqwl6zu+mtac+6UMsLCoVCoSGaO928vDxMJhNjx47lypUrvPTSSyxdupTDhw8DcO7cOSZPnkxWVhYAR44c4YknngAgPj6edevWUVioTUbSokWLSEhIsOkeNWqU7f9Onz7NH//4R5588kksFgtRUVE8+eSTFBQU8NBDD/HGG29oorGmzri4OGJifk4euHjxIrGxsURHR3PmzBmWL1/OypUrKSgo4NFHHyUpKUlzjTVtWVxczJ/+9CfeeecdMjMzMZlMjBtnLdF75swZ7rvvPk00XrlyhdWrVzNr1ixKS0t59dVXWb58OZmZ1mC3/disaT/769MKi8XCkiVLePbZZ20z/iNHjvDyyy+zefNmvvnmG1544QVee+01UlNTMZlMTJ06VVON9napea/bf+72Y7PmGNCLnJwcli5dyqpVq2y/++ijj3j55ZdJTExsdLsNSmJftWoVgYGBpKen06VLFwwGA0ePHiUoKIhJkyYRFxeHj48P0dHReHl5ceDAAY4fPw7AiBEjGDRoEO3bt2fBggXk5+cTEBBAQUEBBQUFdO/eHYDg4GAmT54MQFFREcePH6d3795YLBbMZjODBw/Gx+fGsp2hE2DevHm2myohIYHRo0f/bDgfH3Jycmjbti3e3t7k5uZSUVFBQEAAHTt2pLi42Lp+c4MaMK7QOW/evGpOt1u3bnTu3JkLFy5w9OhRHn74YV5//XW8vb159NFHNfnM67Pl/v37KSsrw8vLi549ezJ37lyuXr1KRUUFn376KaGhoZroDAgI4Pnnn+eVV16hpKSE0tJSoqKi2LJlC3PmzKk2Ntu1a1fNfvbX5wjO0Juens6IESNITU3l5MmTDBw4kCFDhrBjxw5uvvlmdu/ezfLly4mNjSUkJIQuXbrQqpVju95d8bnXvNftP3f7sdmpUyfbGGgoztIN8NlnnzFz5kz27t3L1atXadu2LRkZGSxZsgSj0ciECY3b3Nagma4QgmeeeYabb76ZZcuWcezYMXr37k1hYSEHDx6kXbt2+Pr6kp+ff8N2qgYIwC9/+Uteeukl9u3bd91xX331FZcuXcJsNnPlyhVuueUWRowYwYEDNy7B6SydVeTk5HD27Fm++OILvv76awAyMzN5+umnCQ4O5ty5czz44INERESQkZHBm2++SZ8+fUhLS9NUZ11Mnz6dXr16MWbMGPbu3cuPP/6Il5djH70WtiwrK2Po0KHk5eVRWFjI/v37CQ8P55tvviE7Oxuz2Ux6+o3TZJ2l88svv6Rbt260a9fuhg/MpuIMvb/5zW9IT0/n22+/rTYRiYmJ4cqVK9cd//HHHzv8rcEVY7PmvW7/ud9zzz3VxmbVGGgoztB9/vx5TCZTne03lQbNdL28vBBC4Ovrawu2FBYWYrFYGDZsGMeOHSM4OJj27dsDEB4eXqvhEhMTefrppwE4deoUr732Gvfeey8JCQmMGTOGffv2YbFYmD9/PiNHjkRKSffu3fH392fHjh3MmTNHE53bt2/nxIkTjBs3DqPRSExMDIMHDyYhIYHbb7+djRs3IoSgY8eOxMfH07p1a+655x7WrFnDhQsX6h00rtC5Z88ezGYz33//PYcPH2bAgAHs3r2bvLw8ysrKqKioIDw8HF9fXz788ENatWrF0KFDdbXlmDFjWL16NT4+PgQEBPDVV1/xwgsvALBy5UpiYmLo16+fy21ZUFDA4sWLmTJlChaLBV9fX4xGIzNnzrxubM6dO7ea/eyvr127+t+24yy7/vTTT/Tr149+/fqRkJBAmzZtOHbsGF27dmX06NGsWrWKTp06Adalpq5dHas174rPvbZ7vepztx+b/v7+1cZAQ3CG7h49erBgwQJycnJYt24dAQEBXLt2jX/961/06dOHl19+mV/9qvFvd1fZCxriCVkB4Bk6VfZC03FnbXWhshcUCoVC0SA0dbr2AZ6GoEU2QGO01Yx2z5w5E5PJRElJCRs2bOCll17iyJEjumqE6hFk+4j8li1biIqKcpq+mjRGb83slpqZDq6gsXa1z6zYvHkzixYt4vz5886Udh2N1RoXF8e8efMaFZxqCE29j65du0ZUVBSLFi3SJEvJGfdUQ2lUCb74+Hi8vLyIjIxk48aNXLx4EaPRyMSJE7n11lvp378/6enpLFy4kBdffJHu3bvz3HPPAfDWW29RVFRE3759SUtLIygoiNmzZwPUGUl0NBtAa201o90dO3akqKgIgMuXL7N8+XKMRiNDhgzR1X72EeSaEXlHBp2Wemtmt7z55pvVMh3cRWfNzIrQ0FD2799fb2aNHlqr9JnNZry9vd1On/19lJWVRXBwMB07duTQoUMOp43peU81lEbNdPv27Ut+fr5tW1tVHmNoaChTpkzhzjvvpEuXLgAYDAbuuusuWyQ/KSmJDh06kJuba4sq1rcu42g2gB7a7KPdRqOR8ePHc+DAAdvDobaHhNYa7WlM9FVrvVXZLbVlOriLzpqZFQMHDmThwoW2Pt1JK8DQoUOZNm0aly9fdkt9VfdRz5498fHxITk52eEHmB56m0KjnK7FYqGsrIzk5GRbPiNYc1eFELY/AcxmM7t37+b2260vNzUYDFgsFvr372+LKlbNDsPDw1mwYAELFiywPVGKiopYs2YN+/fvp1evXm6lrSra/eOPP2KxWFi7di0bNmxg0KBBdOrUiVWrVtX61VhLjWCNIO/Zs4eCggJbRH78+PG2TIcTJ064jU3Bmt0yYcIEOnbsiNFoJCwsjMGDB7vVZ3/bbbexcuVKwsLC6NevH6tXr+btt9+mc+fO9erUWqvFYmH16tV88sknBAYGup2+mvdRWVkZbdu2ZeTIkQ5p1VovVL+nGowjBRqshzWc7777Tm7btq1R5zpCpa5G6XO1ttpoqE49NErZcJ1VaKmXyiIjjUFrnbIJ95IrtTZVm5Taj1F7ze6mt6Y96/pRKWMa4gmpWOAZOlXKWNNxZ211oVLGKmlsBBCqR4Dto/8AKSkpzJkzh127dl1X30ALfTWzE4xGI7NmzeLSJetbcJKSkli1ahWxsbHV9mnn5+czdepU3nvvPU10ws/R1PLyckwmE/fffz8ZGRlA9ZoBhYWFmEwmFi1ahJSSJUuWMG/ePE6fPq2pTri+ToS9Pe1rBTT2s2+KTvtof83MBPt6FvBzfZDaaiE0FGfZtrasjz179jQ6W8VV97h9DRNn119w1n1/o3HaGBrkdI1GI1JKYmNjSUxMJCoqipMnTwLWlJmsrCzWrl3LDz/8wNKlS1mxYgUVFRWANQpoMpkwmUwkJycDXBcBto/+A/j6+hIYGEhxcfF19Q200FcVVe3Tpw8lJSUsWbKE4cOHk5eXB8Dhw4dZsGAB//73v237tIOCghBC0L59+2rX4kqdYI2mAnh7e7NgwQJCQkLo27cvUL2eRWBgIAMGDCA3NxchhG39qmrXklY6a/69pj1DQkKYPn06w4cPr/ezd4XO0NBQsrOz8fb2tv29KrBTVc+ioKCgWn2QqloIN910k63/unC1bWvWt8jOzqaoqIigoCBNddV3j9vXMKmqv3Dp0iVb/YWwsPpf1O3q+/5G47QxNMjp9ujRgx07dmAwGCgoKKBr1662PNSqr3vl5eUcOnTIoT3ONSPA9tF/gIEDB2I0GsnIyODSpUvV6htooQ+qZyecPn2anJwc+vfvD8DUqVP585//bFu0r8LHx4c333yT4uLiWnMNXaHTHovFcsObKyIigrCwMCwWC2FhYcyePbvW9BdX66xJTXtW1Qqo77N3hU77aH9tmQlV9Szs64N069at1loIteFK29aW9XHw4EHOnTuH2WyuczLgCl313eP2NUxq1gZxtP6Cq+/7mtR13ztKg/J0J0yYQEREBGazGbPZTOvWrW1PjJCQEDZt2sSpU6eIjIzk6NGj9e5xrooAV+2tX7t2LefOnWPJkiUkJCQQEhLCrl27KC8vp23btuzcuZPWrVsTEVH7W6mdra/mXvzHH3+cSZMmcf78ecxmMwaDgYqKCiZOnMjIkSNt+7Tz8/N57bXXuHTpUq0zM2frhOp73Hfu3Gmb2dasGTBp0iS2bdvG2bNnmTFjBmazmdTUVObOnau5zpp1IuztCT/XCsjOzr7hZ+9snRaLhfj4eE6fPs2oUaNYvXo1mZmZREVFkZCQUK2exdy5c231Qbp06VKtFsKNcLVta9a3qCrpeO3aNdq0aaOZrvrucfsaJj/99FOj6i+4+r7fu3fvDcdpQ1GBNA3xhAAVeIZOFUhrOu6srS5UIE2hUCgUDcKh5QU/P79sIYRjWd8a4ufnl131pzvqq4mfn1+FEMLtH3SeoLPqs3f3z71Kp/2/3UWzO2urC3vN7qa3pj3rwqHlBYVCoVA4B7eezSgUCkVzQzldhUKh0BDldBUKhUJDlNNVKBQKDVFOV6FQKDREOV2FQqHQEOV0FQqFQkOU01UoFAoNUU5XoVAoNEQ5XYVCodAQ5XQVCoVCQ5TTVSgUCg1RTlehUCg0RDldhUKh0BDldBUKhUJDlNNVKBQKDVFOV6FQKDREOV2FQqHQEOV0FQqFQkOU01UoFAoNUU5XoVAoNEQ5XYVCodCQ/w+Jypku/h4iYAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] diff --git a/readme.md b/readme.md index a32320a1..ee2e2a20 100644 --- a/readme.md +++ b/readme.md @@ -40,7 +40,7 @@ preds_proba = model.predict_proba(X_test) # predicted probabilities: shape is (n ## Demo notebooks The demos are contained in 3 main [notebooks](notebooks), following this cheat-sheet:![cheat_sheet](docs/cheat_sheet.png) -1. [model_based.ipynb](notebooks/1_model_based.ipynb) - how to use different interpretable models +1. [model_based.ipynb](notebooks/1_model_based.ipynb) - how to use different interpretable models and examples with the **imodels** package 2. [posthoc.ipynb](notebooks/2_posthoc.ipynb) - different simple analyses to interpret a trained model 3. [uncertainty.ipynb](notebooks/3_uncertainty.ipynb) - code to get uncertainty estimates for a model