You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I think use conv can replace google/hdrnet's ccm function block:
# Color space change
idtity = np.identity(nchans, dtype=np.float32) + np.random.randn(1).astype(np.float32)*1e-4
ccm = tf.get_variable('ccm', dtype=tf.float32, initializer=idtity)
with tf.name_scope('ccm'):
ccm_bias = tf.get_variable('ccm_bias', shape=[nchans,], dtype=tf.float32, initializer=tf.constant_initializer(0.0))
I think use conv can replace google/hdrnet's ccm function block:
# Color space change
idtity = np.identity(nchans, dtype=np.float32) + np.random.randn(1).astype(np.float32)*1e-4
ccm = tf.get_variable('ccm', dtype=tf.float32, initializer=idtity)
with tf.name_scope('ccm'):
ccm_bias = tf.get_variable('ccm_bias', shape=[nchans,], dtype=tf.float32, initializer=tf.constant_initializer(0.0))
so , the code like the following:
class GuideCurves(nn.Module):
def init(self,npts = 16):
super(GuideCurves, self).init()
self.guide_pts = npts
self.ccm = ConvBlock(3,3,kernel_size=1,padding=0,use_bias=True, activation=None, batch_norm=False)
The text was updated successfully, but these errors were encountered: