-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
388 lines (319 loc) · 16.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""Extensible PyTorch NN training script for CIFAR-10 classification models.
A command line script for training NN on the CIFAR-10 dataset. If a configuration file is passed, any other command line
arguments will overwrite the defaults provided by the configuration file.
A rewrite of timm, pared-down for use with CIFAR-10 image dataset. For original timm, see
https://github.com/rwightman/pytorch-image-models.
Typical usage:
$python train.py --config your-experiment-config.yml
"""
import argparse
import json
import logging
import os.path
import time
from typing import Tuple, Callable
import numpy as np
import torch
import torch.utils.data
import torchvision as torchvision
import yaml
from torch import Tensor
import utils
from models import model_registry
from utils import create_optimizer, create_scheduler
logging.basicConfig(level=logging.INFO, format='%(message)s')
config_parser = parser = argparse.ArgumentParser(description="PyTorch CIFAR-10 Training", add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser(description='PyTorch CIFAR-10 Training')
# Model parameters
group = parser.add_argument_group('Model parameters')
group.add_argument('--model', default='resnet10', type=str, metavar='MODEL',
help='Name of model to train (default: "resnet10")')
group.add_argument('--resume', default='', type=str, metavar='PATH',
help='Resume full model and optimizer state from checkpoint (default: none)')
group.add_argument('-b', '--batch-size', type=int, default=512, metavar='N',
help='Input batch size for training (default: 512)')
# Optimizer parameters
group = parser.add_argument_group('Optimizer parameters')
group.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "sgd")')
group.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: None, use opt default)')
group.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='Optimizer momentum (default: 0.9)')
group.add_argument('--weight-decay', type=float, default=5e-5, metavar="WD",
help='Weight decay (default: 5e-5)')
# Learning rate schedule parameters
group = parser.add_argument_group('Learning rate schedule parameters')
group.add_argument('--sched', type=str, default='onecycle', metavar='SCHEDULER',
help='LR scheduler (default: "onecycle")')
group.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='Learning rate (default: 0.01`)')
group.add_argument('--min-lr', type=float, default=0.0, metavar='MINLR',
help='Minimum learning rate--only used by some schedulers (default: 0.0)')
group.add_argument('--epochs', type=int, default=300, metavar='ENUM',
help='Number of epochs to train (default: 300)')
group.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
group.add_argument('--t-initial', type=int, default=200, metavar='T_0',
help='T_0 for cosine annealing (default: 200)')
group.add_argument('--t-mult', type=int, default=1, metavar='T_M',
help='T_mult for cosine annealing (default: 1)')
group.add_argument('--plateau-mode', type=str, default='min', metavar='P_M',
help='plateau mode for LR reduction on plateau (default: "min")')
group.add_argument('--patience', type=int, default=10, metavar='PAT',
help='Number of updates to wait before reducing LR (default: 10)')
# Augmentation & regularization parameters
group = parser.add_argument_group('Augmentation and regularization parameters')
group.add_argument('--val-ratio', type=float, default=0.9, metavar="V_SPLIT",
help='Ratio for train-validation split (default: 0.9')
group.add_argument('--hflip', type=float, default=0.5, metavar="HF",
help='Horizontal flip probability (default: 0.5)')
group.add_argument('--vflip', type=float, default=0., metavar="VF",
help='Vertical flip probability (default: 0.0)')
group.add_argument('--scale', type=float, default=1.0, metavar="SCALE",
help='Scale value for random resizing (default: 1.0)')
group.add_argument('--rand_aug', type=bool, default=False, metavar="RA",
help='Toggle random augmentation (default: False)')
group.add_argument('--ra-n', type=int, default=0, metavar="RAN",
help='Number of operations for random augmentation (default: 0)')
group.add_argument('--ra-m', type=float, default=0.0, metavar="RAM",
help='Magnitude of random augmentation operations (default: 0.0')
group.add_argument('--erase', type=float, default=0.25, metavar="RE", help='Random erase probability (default: 0.25)')
group.add_argument('--jitter', type=float, default=0.1, metavar="JITTER",
help='Color jitter probability (default: 0.1)')
parser.add_argument('--beta', default=0.0, type=float,
help='CutMix beta')
parser.add_argument('--cutmix-prob', default=0.0, type=float,
help='CutMix probability')
# Misc
group = parser.add_argument_group('Miscellaneous parameters')
group.add_argument('--log-interval', type=int, default=50, metavar='LOG_I',
help='Batches to wait before logging training status')
group.add_argument('--recovery-interval', type=int, default=0, metavar='REC_I',
help='Batches to wait before writing recovery checkpoint')
group.add_argument('--checkpoint-hist', type=int, default=10, metavar='NUM_CKPT',
help='Checkpoints to keep (default: 10)')
group.add_argument('--checkpoint-dir', default='checkpoints', type=str, metavar='CKPT_PATH',
help='Path to checkpoints (default: checkpoints)')
group.add_argument('--log-dir', default='logs', type=str, metavar='LOG_PATH',
help='Path to training logs (default: "logs")')
group.add_argument('--experiment', default='', type=str, metavar='NAME',
help='Experiment identifier, used to name log and checkpoint sub-folders (default: None)')
def _parse_args():
"""Load config (if any) to override defaults, then parse command line arguments.
Returns:
tuple: dict and string version of arguments
"""
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
args = parser.parse_args(remaining)
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
def rand_bbox(size, lam):
"""CutMix regularization function.
See https://github.com/clovaai/CutMix-PyTorch
"""
W = size[2]
H = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = int(W * cut_rat)
cut_h = int(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def accuracy(y_pred: Tensor, y: Tensor):
"""Calculates accuracy."""
top_pred = y_pred.argmax(1, keepdim=True)
correct = top_pred.eq(y.view_as(top_pred)).sum()
acc = correct.float() / y.shape[0]
return acc
def train_one_epoch(epoch: int, model: torch.nn.Module, loader: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer, lr_scheduler: Callable, train_loss_fn: Callable, args,
device=torch.device('cuda')
) -> Tuple[float, float, float]:
"""Trains model for a single epoch.
Returns:
tuple: loss, accuracy
"""
num_batches = len(loader)
last_idx = num_batches - 1
num_updates = epoch * num_batches
epoch_loss = 0.0
epoch_acc = 0.0
model.train()
lr = None
for batch_idx, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
# CutMix regularization - See https://github.com/clovaai/CutMix-PyTorch
r = np.random.rand(1)
if args.beta > 0 and r < args.cutmix_prob:
# generate mixed sample
lam = np.random.beta(args.beta, args.beta)
rand_index = torch.randperm(inputs.size()[0]).cuda()
target_a = targets
target_b = targets[rand_index]
bbx1, bby1, bbx2, bby2 = rand_bbox(inputs.size(), lam)
inputs[:, :, bbx1:bbx2, bby1:bby2] = inputs[rand_index, :, bbx1:bbx2, bby1:bby2]
# adjust lambda to exactly match pixel ratio
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (inputs.size()[-1] * inputs.size()[-2]))
# compute output
outputs = model(inputs)
loss = train_loss_fn(outputs, target_a) * lam + train_loss_fn(outputs, target_b) * (1. - lam)
else:
# compute output
outputs = model(inputs)
loss = train_loss_fn(outputs, targets)
lr = lr_scheduler.get_last_lr()[0] # for logging
acc = accuracy(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Call lr scheduler with appropriate arguments
if args.sched == 'onecycle':
lr_scheduler.step()
elif args.sched == 'cosine_warm':
lr_scheduler.step(epoch + batch_idx / num_batches)
num_updates += 1
epoch_loss += loss.item()
epoch_acc += acc.item()
if (batch_idx + 1) % args.log_interval == 0:
logging.info(
f"Epoch: {epoch + 1} [{batch_idx + 1}/{num_batches} ({100 * batch_idx / last_idx:.0f}%)] "
f"Loss: {loss:.3f} ({epoch_loss / (batch_idx + 1):.3f}) "
f"Acc: {acc:.3f} ({epoch_acc / (batch_idx + 1):.3f}) "
f"lr: {lr:.6f}"
)
return epoch_loss / num_batches, epoch_acc / num_batches, lr
def validate(model: torch.nn.Module, loader: torch.utils.data.DataLoader, loss_fn: Callable,
device=torch.device('cuda')) -> Tuple[float, float]:
"""Model validation.
Returns:
tuple: (loss, accuracy)
"""
model.eval()
num_batches = len(loader)
last_idx = len(loader) - 1
val_loss = 0.0
val_acc = 0.0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(loader):
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = loss_fn(outputs, targets)
acc = accuracy(outputs, targets)
val_loss += loss
val_acc += acc
return val_loss / num_batches, val_acc / num_batches
def main():
args, args_text = _parse_args()
logging.info(f"Preparing experiment {args.experiment}...")
ckpt_path = os.path.join(args.checkpoint_dir, args.experiment)
if not os.path.exists(ckpt_path):
os.makedirs(ckpt_path)
log_path = os.path.join(args.log_dir, args.experiment)
if not os.path.exists(log_path):
os.makedirs(log_path)
with open(os.path.join(log_path, f"{args.experiment}_config.yml"), "w") as f:
f.write(args_text)
f.close()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# TODO: Revise model creation to take parameters as kwargs?
# model_registry[args.model] -> model_registry[args.model](**kwargs)
# Requires adding direct call to class definition, e.g., { "resnet": ResNet }
model = model_registry[args.model]()
model = model.to(device)
logging.info(f"{args.model} created, # of params: {sum([m.numel() for m in model.parameters()]):,d}.")
optimizer = create_optimizer(params=model.parameters(), opt_name=args.opt, lr=args.lr,
weight_decay=args.weight_decay)
train_loss_fn = torch.nn.CrossEntropyLoss().to(device)
validate_loss_fn = torch.nn.CrossEntropyLoss().to(device)
# Create training and validation datasets
ROOT = '.data'
train_data = torchvision.datasets.CIFAR10(ROOT,
train=True,
download=True)
# CIFAR-10 statistics
mean = (0.4914, 0.4822, 0.4465)
std = (0.2471, 0.2435, 0.2616)
input_size = (3, 32, 32)
n_train = int(len(train_data) * args.val_ratio)
n_val = len(train_data) - n_train
# Seed generator so that, if continuing from checkpoint, we do not have data leakage from the validation set
train_data, val_data = torch.utils.data.random_split(train_data, [n_train, n_val],
generator=torch.Generator().manual_seed(2766521))
# Create dataloaders w/augmentation pipeline
train_loader = utils.create_loader(train_data, input_size=input_size, mean=mean, std=std,
batch_size=args.batch_size, is_training=True, rand_aug=args.rand_aug,
ra_n=args.ra_n, ra_m=args.ra_m, jitter=args.jitter, scale=args.scale,
prob_erase=args.erase)
val_loader = utils.create_loader(val_data, input_size=input_size, mean=mean, std=std, batch_size=args.batch_size,
is_training=False)
# Resume from checkpoint, if provided
start_epoch = 0
best_acc = None
if args.resume:
ckpt = torch.load(args.resume)
model.load_state_dict(ckpt['model_state_dict'])
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
start_epoch = ckpt['epoch']
best_acc = ckpt['acc']
# Create scheduler
lr_scheduler = create_scheduler(optimizer=optimizer, lr=args.lr, sched=args.sched, num_epochs=args.epochs,
steps_per_epoch=len(train_loader), min_lr=args.min_lr,
T_0=args.t_initial, T_mult=args.t_mult, plateau_mode=args.plateau_mode,
patience=args.patience)
if (lr_scheduler is not None or lr_scheduler != 'custom') and start_epoch > 0:
lr_scheduler.step(start_epoch)
metrics = {}
try:
for epoch in range(start_epoch, args.epochs):
start = time.time()
(train_loss, train_acc, lr) = train_one_epoch(epoch, model, train_loader, optimizer, lr_scheduler,
train_loss_fn, args,
device)
(val_loss, val_acc) = validate(model, val_loader, validate_loss_fn, device)
if args.sched == 'plateau':
lr_scheduler.step(val_loss)
t_epoch = time.time() - start
logging.info(
f"Epoch {epoch + 1} complete:\n\tTrain Acc: {train_acc:.2f}\n\tTest Acc: {val_acc:.2f}\n\t"
f"lr: {lr:.5f}\n\tTime: {t_epoch:.1f}s")
# TODO:
# Find better solution:
# val_loss and val_acc are returned as tensors--they shouldn't be!
metrics[epoch] = {'train_loss': train_loss, 'train_acc': train_acc, 'val_loss': val_loss.item(),
'val_acc': val_acc.item(), "lr": lr, "t_epoch": t_epoch}
if best_acc is None or val_acc > best_acc:
if best_acc is not None:
logging.info(
f"Accuracy increased ({0.00 if None else best_acc:.2f} -> {val_acc:.2f}). Saving model...")
torch.save({
'epoch': epoch,
'loss': val_loss,
'acc': val_acc,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, os.path.join(args.checkpoint_dir, args.experiment, f"{args.model}_{epoch}_{time.time()}.pt"))
best_acc = val_acc
except KeyboardInterrupt:
pass
# Dump loss and accuracy metrics to json
if metrics:
data_dump = json.dumps(metrics)
f = open(os.path.join(log_path, f"train_{time.time()}"), "w")
f.write(data_dump)
f.close()
if __name__ == '__main__':
main()