-
Notifications
You must be signed in to change notification settings - Fork 259
/
kitti_train.py
executable file
·81 lines (66 loc) · 3.44 KB
/
kitti_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
'''
Train PredNet on KITTI sequences. (Geiger et al. 2013, http://www.cvlibs.net/datasets/kitti/)
'''
import os
import numpy as np
np.random.seed(123)
from six.moves import cPickle
from keras import backend as K
from keras.models import Model
from keras.layers import Input, Dense, Flatten
from keras.layers import LSTM
from keras.layers import TimeDistributed
from keras.callbacks import LearningRateScheduler, ModelCheckpoint
from keras.optimizers import Adam
from prednet import PredNet
from data_utils import SequenceGenerator
from kitti_settings import *
save_model = True # if weights will be saved
weights_file = os.path.join(WEIGHTS_DIR, 'prednet_kitti_weights.hdf5') # where weights will be saved
json_file = os.path.join(WEIGHTS_DIR, 'prednet_kitti_model.json')
# Data files
train_file = os.path.join(DATA_DIR, 'X_train.hkl')
train_sources = os.path.join(DATA_DIR, 'sources_train.hkl')
val_file = os.path.join(DATA_DIR, 'X_val.hkl')
val_sources = os.path.join(DATA_DIR, 'sources_val.hkl')
# Training parameters
nb_epoch = 150
batch_size = 4
samples_per_epoch = 500
N_seq_val = 100 # number of sequences to use for validation
# Model parameters
n_channels, im_height, im_width = (3, 128, 160)
input_shape = (n_channels, im_height, im_width) if K.image_data_format() == 'channels_first' else (im_height, im_width, n_channels)
stack_sizes = (n_channels, 48, 96, 192)
R_stack_sizes = stack_sizes
A_filt_sizes = (3, 3, 3)
Ahat_filt_sizes = (3, 3, 3, 3)
R_filt_sizes = (3, 3, 3, 3)
layer_loss_weights = np.array([1., 0., 0., 0.]) # weighting for each layer in final loss; "L_0" model: [1, 0, 0, 0], "L_all": [1, 0.1, 0.1, 0.1]
layer_loss_weights = np.expand_dims(layer_loss_weights, 1)
nt = 10 # number of timesteps used for sequences in training
time_loss_weights = 1./ (nt - 1) * np.ones((nt,1)) # equally weight all timesteps except the first
time_loss_weights[0] = 0
prednet = PredNet(stack_sizes, R_stack_sizes,
A_filt_sizes, Ahat_filt_sizes, R_filt_sizes,
output_mode='error', return_sequences=True)
inputs = Input(shape=(nt,) + input_shape)
errors = prednet(inputs) # errors will be (batch_size, nt, nb_layers)
errors_by_time = TimeDistributed(Dense(1, trainable=False), weights=[layer_loss_weights, np.zeros(1)], trainable=False)(errors) # calculate weighted error by layer
errors_by_time = Flatten()(errors_by_time) # will be (batch_size, nt)
final_errors = Dense(1, weights=[time_loss_weights, np.zeros(1)], trainable=False)(errors_by_time) # weight errors by time
model = Model(inputs=inputs, outputs=final_errors)
model.compile(loss='mean_absolute_error', optimizer='adam')
train_generator = SequenceGenerator(train_file, train_sources, nt, batch_size=batch_size, shuffle=True)
val_generator = SequenceGenerator(val_file, val_sources, nt, batch_size=batch_size, N_seq=N_seq_val)
lr_schedule = lambda epoch: 0.001 if epoch < 75 else 0.0001 # start with lr of 0.001 and then drop to 0.0001 after 75 epochs
callbacks = [LearningRateScheduler(lr_schedule)]
if save_model:
if not os.path.exists(WEIGHTS_DIR): os.mkdir(WEIGHTS_DIR)
callbacks.append(ModelCheckpoint(filepath=weights_file, monitor='val_loss', save_best_only=True))
history = model.fit_generator(train_generator, samples_per_epoch / batch_size, nb_epoch, callbacks=callbacks,
validation_data=val_generator, validation_steps=N_seq_val / batch_size)
if save_model:
json_string = model.to_json()
with open(json_file, "w") as f:
f.write(json_string)