Skip to content

Latest commit

 

History

History
138 lines (100 loc) · 3.47 KB

README.md

File metadata and controls

138 lines (100 loc) · 3.47 KB

dagster-mssql-bcp

Unit tests

ODBC is slow 🐢 bcp is fast! 🐰

This is a custom dagster IO manager for loading data into SQL Server using the bcp utility.

What you need to run it

Pypi

PyPI

pip install dagster-mssql-bcp

BCP Utility

The bcp utility must be installed on the machine that is running the dagster pipeline.

See Microsoft's documentation for more information.

Ideally you should place this on your PATH, but you can specify in the IO configuration where it is located.

ODBC Drivers

You need the ODBC drivers installed on the machine that is running the dagster pipeline.

See Microsoft's documentation for more information.

Permissions

The user running the dagster pipeline must have the necessary permissions to load data into the SQL Server database.

  • CREATE SCHEMA
  • CREATE/ALTER TABLES

Basic Usage

Polars

Polars processes as a LazyFrame. Either a DataFrame or LazyFrame can be provided as an output of your asset before its cast automatically to lazy

from dagster import asset, Definitions
from dagster_mssql_bcp import PolarsBCPIOManager
import polars as pl

io_manager = PolarsBCPIOManager(
    host="my_mssql_server",
    database="my_database",
    user="username",
    password="password",
    query_props={
        "TrustServerCertificate": "yes",
    },
    bcp_arguments={"-u": ""},
    bcp_path="/opt/mssql-tools18/bin/bcp",
)

@asset(
    metadata={
        "asset_schema": [
            {"name": "id", "type": "INT"},
        ],
        "schema": "my_schema",
    }
)
def my_polars_asset(context):
    return pl.DataFrame({"id": [1, 2, 3]})


@asset(
    metadata={
        "asset_schema": [
            {"name": "id", "type": "INT"},
        ],
        "schema": "my_schema",
    }
)
def my_polars_asset_lazy(context):
    return pl.LazyFrame({"id": [1, 2, 3]})

defs = Definitions(
    assets=[my_polars_asset, my_polars_asset_lazy],
    io_managers={
        "io_manager": io_manager,
    },
)

Pandas

from dagster import asset, Definitions
from dagster_mssql_bcp import PandasBCPIOManager
import pandas as pd

io_manager = PandasBCPIOManager(
    host="my_mssql_server",
    database="my_database",
    user="username",
    password="password",
    query_props={
        "TrustServerCertificate": "yes",
    },
    bcp_arguments={"-u": ""},
    bcp_path="/opt/mssql-tools18/bin/bcp",
)

@asset(
    metadata={
        "asset_schema": [
            {"name": "id", "type": "INT"},
        ],
        "schema": "my_schema",
    }
)
def my_pandas_asset(context):
    return pd.DataFrame({"id": [1, 2, 3]})


defs = Definitions(
    assets=[my_pandas_asset],
    io_managers={
        "io_manager": io_manager,
    },
)

The asset schema defines your table structure and your asset returns your data to load.

Docs

For more details see assets doc, io manager doc, and for how its implemented, the dev doc.